|
阿丽亚·拜都热拉, 玉米提·哈力克, 塔依尔江·艾山, 等. 干旱区绿洲城市主要绿化树种最大滞尘量对比. 林业科学, 2015. 51 (3): 57- 64.
|
|
Aliya B , Umut H , Tayierjiang A , et al. Maximum dust retention of main greening trees in arid land oasis cities, northwest China. Scientia Silvae Sinicae, 2015. 51 (3): 57- 64.
|
|
陈波. 北京西山不同树种夏秋季PM2.5吸附量与润湿性关系. 南京林业大学学报:自然科学版, 2018. 42 (2): 113- 119.
|
|
Chen B . Relationship between PM2.5 adsorption and wettability of different trees during summer, autumn in West Mountain of Beijing. Journal of Nanjing Forestry University:Natural Sciences Edition, 2018. 42 (2): 113- 119.
|
|
范舒欣, 晏海, 齐石茗月, 等. 北京市26种落叶阔叶绿化树种的滞尘能力. 植物生态学报, 2015. 39 (7): 736- 745.
|
|
Fan S X , Yan H , Qi S M Y , et al. Dust capturing capacities of twenty-six deciduous broad-leaved trees in Beijing. Chinese Journal of Plant Ecology, 2015. 39 (7): 736- 745.
|
|
贾文茹, 李生宇, 高晓阳, 等. 塔克拉玛干沙漠腹地不同种类植物叶面滞尘粒度特征. 中国沙漠, 2014. 34 (3): 658- 665.
|
|
Jia W R , Li S Y , Gao X Y , et al. The foliar dust grain size characteristics of different plant species in the central Taklimakan Desert. Journal of Desert Research, 2014. 34 (3): 658- 665.
|
|
梁丹, 王彬, 王云琦, 等. 北京市典型绿化灌木阻滞吸附PM2.5能力的研究. 环境科学, 2014. 35 (9): 3606- 3611.
|
|
Liang D , Wang B , Wang Y Q , et al. Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5. Environmental Science, 2014. 35 (9): 3606- 3611.
|
|
刘欢欢, 曹治国, 贾黎明, 等. 基于超声清洗树木叶片吸滞大气颗粒物定量评估——以银杏为例. 林业科学, 2016. 52 (12): 133- 140.
doi: 10.11707/j.1001-7488.20161216
|
|
Liu H H , Cao Z G , Jia L M , et al. Analysis of the role of ultrasonic cleaning in quantitative evaluation of the retention of tree leaves to atmospheric particles:a case study with Ginkgo biloba. Scientia Silvae Sinicae, 2016. 52 (12): 133- 140.
doi: 10.11707/j.1001-7488.20161216
|
|
刘金强, 曹治国, 刘欢欢, 等. 基于超声清洗的树木叶面颗粒物粒径分布与吸滞效率研究——以银杏和油松为例. 植物生态学报, 2016. 40 (8): 798- 809.
|
|
Liu J Q , Cao Z G , Liu H H , et al. Ultrasonic based investigation on particle size distribution and retention efficiency of particulate matters retained on tree leaves:Taking Ginkgo biloba and Pinus tabuliformis as examples. Chinese Journal of Plant Ecology, 2016. 40 (8): 798- 809.
|
|
刘金强, 曹治国, 郭泽敏, 等. 植物叶片表面水溶与非水溶性颗粒物滞纳量分离定量评估——以5种树种为例. 应用生态学报, 2019. 30 (5): 344- 352.
|
|
Liu J Q , Cao Z G , Guo Z M , et al. Quantitative evaluation for separation of water-soluble and water-insolube particulate matter on leaf surface of tree species:taking five tree species as examples. Chinese Journal of Applied Ecology, 2019. 30 (5): 344- 352.
|
|
刘玲, 方炎明, 王顺昌, 等. 7种树木的叶片微形态与空气悬浮颗粒吸附及重金属累积特征. 环境科学, 2013. 34 (6): 2361- 2367.
|
|
Liu L , Fang Y M , Wang S C , et al. Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven tree species. Environmental Science, 2013. 34 (6): 2361- 2367.
|
|
刘同彦, 纪媛, 蒋春晓, 等. 基于洗脱称量粒度分析的北京常见树种树叶滞纳大气颗粒物特性. 林业科学, 2016. 52 (12): 74- 83.
doi: 10.11707/j.1001-7488.20161209
|
|
Liu T Y , Ji Y , Jiang C X , et al. Characterization of the retention of atmospheric particulates by leaves of common tree species in Beijing based on elution-weighing-particle size-analysis. Scientia Silvae Sinicae, 2016. 52 (12): 74- 83.
doi: 10.11707/j.1001-7488.20161209
|
|
吕铃钥, 李洪远, 杨佳楠. 植物吸附大气颗粒物的时空变化规律及其影响因素的研究进展. 生态学杂志, 2016. 35 (2): 524- 533.
|
|
Lü L Y , Li H Y , Yang J N . The temporal-spatial variation characteristics and influencing factors of absorbing air particulate matters by plants:a review. Chinese Journal of Ecology, 2016. 35 (2): 524- 533.
|
|
涂忠虞. 柳树育种与栽培. 南京: 江苏科学技术出版社. 1982.
|
|
Tu Z Y . Willows breeding and cultivation. Nanjing: Phoenix Science Press. 1982.
|
|
王博, 陈红, 夏敦胜, 等. 兰州市叶面尘磁性与黑碳特征对大气污染的响应. 中国环境科学, 2019. 39 (8): 3178- 3185.
doi: 10.3969/j.issn.1000-6923.2019.08.006
|
|
Wang B , Chen H , Xia D S , et al. On the magnetic characteristic of leaf-deposited particles and element carbon and its response to air pollution. China Environmental Science, 2019. 39 (8): 3178- 3185.
doi: 10.3969/j.issn.1000-6923.2019.08.006
|
|
王会霞, 王彦辉, 杨佳, 等. 不同绿化树种滞留PM2.5等颗粒污染物能力的多尺度比较. .林业科学, 2015. 51 (7): 9- 20.
|
|
Wang H X , Wang Y H , Yang J , et al. Multi-scale comparisons of particulate matter and its size fractions deposited on leaf surfaces of major greening tree species. Scientia Silvae Sinicae, 2015. 51 (7): 9- 20.
|
|
王蕾, 高尚玉, 刘连友, 等. 北京市11种园林植物滞留大气颗粒物能力研究. 应用生态学报, 2006. 17 (4): 597- 601.
doi: 10.3321/j.issn:1001-9332.2006.04.008
|
|
Wang L , Gao S Y , Liu L Y , et al. Atmospheric particle-retaining capability of eleven garden plant species in Beijing. Chinese Journal of Applied Ecology, 2006. 17 (4): 597- 601.
doi: 10.3321/j.issn:1001-9332.2006.04.008
|
|
张少伟, 翟飞飞, 费英杰, 等. 8个柳树无性系的观赏价值与适应性研究. 西南林业大学学报, 2017. 37 (4): 41- 46.
|
|
Zhang S W , Zhai F F , Fei Y J , et al. Ornamental value and adaptability of 8 willow clones. Journal of Southwest Forestry University, 2017. 37 (4): 41- 46.
|
|
张维康, 王兵, 牛香. 北京不同污染地区园林植物对空气颗粒物的滞纳能力. 环境科学, 2015. 36 (7): 2382- 2388.
|
|
Zhang W K , Wang B , Niu X . Adsorption capacity of the air particulate matter in urban landscape plants in different polluted regions of Beijing. Environmental Science., 2015. 36 (7): 2382- 2388.
|
|
张维康, 王兵, 牛香. 北京市常见树种叶片吸滞颗粒物能力时间动态研究. 环境科学学报, 2016. 36 (10): 3840- 3847.
|
|
Zhang W K , Wang B , Niu X . Dynamic research on particulates-absorbing capacities of common tree species leaves in Beijing over time. Acta Scientiae Circumstantiae, 2016. 36 (10): 3840- 3847.
|
|
张晓丽, 翟飞飞, 李伟, 等. 27个柳树无性系对镉的吸收分配特性. 林业科学, 2017. 53 (4): 9- 17.
|
|
Zhang X L , Zhai F F , Li W , et al. Characteristics of cadmium absorption and distribution in 27 willow clones. Scientia Silvae Sinicae, 2017. 53 (4): 9- 17.
|
|
张志丹, 席本野, 曹治国, 等. 植物叶片吸滞PM2.5等大气颗粒物定量研究方法初探——以毛白杨为例. 应用生态学报, 2014. 25 (8): 2238- 2242.
|
|
Zhang Z D , Xi B Y , Cao Z G , et al. Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves:taking Populus tomentosa as an example. Chinese Journal of Applied Ecology, 2014. 25 (8): 2238- 2242.
|
|
Cao Z G , Yu G , Chen Y S , et al. Mechanisms influencing the BFR distribution patterns in office dust and implications for estimating human exposure. Journal of Hazardous Materials, 2013. 252-253, 11- 18.
doi: 10.1016/j.jhazmat.2013.02.043
|
|
Chen L X , Liu C M , Zou R , et al. Experimental examination of effectiveness of vegetation as bio-filter of particulate matter in the urban environment. Environmental Pollution, 2016. 208, 198- 208.
doi: 10.1016/j.envpol.2015.09.006
|
|
Chen L X , Liu C M , Zhang L , et al. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Scientific Reports, 2017. 7 (1): 3206.
doi: 10.1038/s41598-017-03360-1
|
|
Hofman J , Stokkaer I , Snauwaert L , et al. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environmental Pollution, 2013. 183, 123- 132.
doi: 10.1016/j.envpol.2012.09.015
|
|
Kardel F , Wuyts K , Maher B A , et al. Leaf saturation isothermal remanet magnetization (SIRM) as a proxy for particulate matter monitoring:inter-species differences and in-season variation. Atmospheric Environment, 2011. 45 (29): 5164- 5171.
doi: 10.1016/j.atmosenv.2011.06.025
|
|
Kuzovkina Y A , Knee M , Quigley M F . Cadmium and copper uptake and translocation in five willow (Salix L.) species. International Journal of Phytoremediation, 2004. 6 (3): 269- 287.
doi: 10.1080/16226510490496726
|
|
Liu J Q , Cao Z G , Zou S Y , et al. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Science of the Total Environment, 2018. 616/617, 417- 426.
doi: 10.1016/j.scitotenv.2017.10.314
|
|
Przybysz A , Sæbø A , Hanslin H M , et al. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Science of the Total Environment, 2014. 481 (48): 360- 369.
|
|
Räsänen J V , Holopainen T , Joutsensaari J , et al. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environmental Pollution, 2013. 183, 64- 70.
doi: 10.1016/j.envpol.2013.05.015
|
|
Shao F , Wang L H , Sun F B , et al. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Science of the Total Environment, 2019. 652, 939- 951.
doi: 10.1016/j.scitotenv.2018.10.182
|
|
Song Y S , Maher B A , Li F , et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China:source identification and size distribution. Atmospheric Environment, 2015. 105 (1): 53- 60.
|
|
Vassilev A , Perez-Sanz A , Cuypers A , et al. Tolerance of two hydroponically grown Salix genotypes to excess zinc. Journal of Plant Nutrition, 2007. 30 (9): 1471- 1482.
doi: 10.1080/01904160701555671
|
|
Wang H X , Shi H , Li Y Y , et al. Seasonal variations in leaf capturing of particulate matter, surface wettability and micromorphology in urban tree species. Frontiers of Environmental Science & Engineering, 2013. 7 (4): 579- 588.
|
|
Weerakkody U , Dover J W , Mitchell P , et al. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban Forestry & Urban Greening, 2018. 30, 98- 107.
|
|
Xu Y S , Xu W , Mo L , et al. Quantifying particulate matter accumulated on leaves by 17 species of urban trees in Beijing, China. Environmental Science and Pollution Research International, 2018. 25 (13): 545- 556.
|
|
Yang J , Mcbride J , Zhou J , et al. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 2005. 3 (2): 65- 78.
|