曹庆先, 徐大平, 鞠洪波. 2011. 基于TM影像纹理与光谱特征和KNN方法估算5种红树林群落生物量. 林业科学研究, 24(2): 144-150. (Cao Q X, Xu D P, Ju H B. 2011. Biomass estimation of five kinds of mangrove community with the KNN method based on the spectral information and textural features of TM images. Forest Research, 24(2): 144-150. [in Chinese]) 陈传国,朱俊凤. 1989. 东北主要林木生物量手册. 北京:中国林业出版社. (Chen C G, Zhu J F. 1989. Woody biomass manual of typical species in the northeast of China. Beijng: China Forestry Publishing House. [in Chinese]) 冯琦, 陈尔学, 李增元, 等. 2016. 基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法. 林业科学, 52(3): 10-21. (Feng Q, Chen E X, Li Z Y, et al. 2016. Forest Above-ground biomass estimation method for rugged terrain based on airborne P-band PolSAR data. Scientia Silvae Sinicae, 52(3): 10-21. [in Chinese]) 郭云, 李增元, 陈尔学, 等. 2015. 甘肃黑河流域上游森林地上生物量的多光谱遥感估测. 林业科学, 51(1): 140-149. (Guo Y, Li Z Y, Chen E X, et al. 2015. Estimating forest above-ground biomass in the upper reaches of Heihe River basin using multi-spectral remote sensing. Scientia Silvae Sinicae, 51(1): 140-149. [in Chinese]) 国庆喜, 张锋. 2003. 基于遥感信息估测森林的生物量. 东北林业大学学报, 31(2): 13-16. (Guo Q X, Zhang F. 2003. Estimation of forest biomass based on remote sensing. Journal of Northeast Forestry University, 31(2): 13-16. [in Chinese]) 郭志华, 彭少麟, 王伯荪. 2002. 利用TM数据提取粤西地区的森林生物量. 生态学报, 22(11): 1832-1839. (Guo Z H, Peng S L, Wang B S. Estimating forest biomass in western Guangdong using Landsat TM data. Acta Ecologica Sinica, 22(11): 1832-1839. [in Chinese]) 胡凯龙, 刘清旺, 穆喜云. 2015. 差分 GNSS 系统在大兴安岭地区森林资源调查中的精度分析. 林业调查规划, 40(4): 1-6. (Hu K L, Liu Q W, Mu X Y. 2015. Differential GNSS application on location precision analysis of forest resource investigation in Daxinganling region. Forest Inventory and Planning, 40(4): 1-6. [in Chinese]) 李春梅, 张王菲, 李增元, 等. 2016. 基于多源数据的根河实验区生物量反演研究. 北京林业大学学报, 38(3): 64-72. (Li C M, Zhang W F, Li Z Y, et al. 2016. Retrieval of forest above-ground biomass using multi-source data in Genhe, Inner Mongolia. Journal of Beijing Forestry University, 38(3): 64-72. [in Chinese]) 李德仁, 王长委, 胡月明, 等. 2012. 遥感技术估算森林生物量的研究进展. 武汉大学学报: 信息科学版, 37(6): 631-635. (Li D R, Wang C W, Hu Y M, et al. 2012. General review on remote sensing-based biomass estimation. Geomatics and Information Science of Wuhan University, 37(6): 631-635. [in Chinese]) 李明阳, 余超, 张密芳, 等. 2015. 紫金山风景林生物量及其驱动因素时间轨迹分析. 北京林业大学学报, 37(2): 1-7. (Li M Y, Yu C, Zhang M F, et al. 2015.Time trajectory analysis of scenic forest biomass and driving factors in Zijin Mountain, eastern China. Journal of Beijing Forestry University, 37(2): 1-7. [in Chinese]) 戚玉娇, 李凤日. 2015. 基于KNN方法的大兴安岭地区森林地上碳储量遥感估算. 林业科学, 51(5): 46-55. (Qi Y J, Li F R. 2015. Remote sensing estimation of aboveground forest carbon storage in Daxing'an Mountains based on KNN method. Scientia Silvae Sinicae, 51(5): 46-55. [in Chinese]) 徐婷, 曹林, 申鑫, 等. 2015. 基于机载激光雷达与 Landsat 8 OLI 数据的亚热带森林生物量估算. 植物生态学报, 39(4): 309-321. (Xu T, Cao L, Shen X, et al. 2015. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data. Chinese Journal of Plant Ecology, 39(4): 309-321. [in Chinese]) 徐涵秋, 唐菲. 2013. 新一代 Landsat 系列卫星: Landsat 8 遥感影像新增特征及其生态环境意义. 生态学报, 33(11): 3249-3257. (Xu H Q, Tang F. 2013.Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance. Acta Ecologica Sinica, 33(11): 3249-3257. [in Chinese]) Anderson G P, Felde G W, Hoke M L, et al. 2002. MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes). AeroSense 2002, International Society for Optics and Photonics, 4725:65-71. Bastin J F, Barbier N, Couteron P, et al. 2014. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecological Applications, 24(8): 1984-2001. Birth G S, McVey G R. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60(6): 640-643. Breiman L. 1996. Heuristics of instability and stabilization in model selection. The Annals of Statistics, 24(6): 2350-2383. Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32. Chinembiri T S, Bronsveld M C, Rossiter D G, et al. 2013. The precision of C stock estimation in the ludhikola watershed using model-based and design-based approaches. Natural Resources Research, 22(4): 297-309. Crookston N L, Finley A O. 2008. yaImpute: an R package for kNN imputation. Journal of Statistical Software, 23 (10): 16. Cutler M E J, Boyd D S, Foody G M, et al. 2012. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70(3): 66-77. Dube T, Mutanga O. 2015. Investigating the robustness of the new Landsat-8 operational land imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS Journal of Photogrammetry and Remote Sensing, 108: 12-32. Efron B, Tibshirani R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1): 54-75. Eckert S. 2012. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote Sensing, 4(4): 810-829. Foody G M, Cutler M E, Mcmorrow J, et al. 2001. Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10(4): 379-387. Franco-Lopez H, Ek A R, Bauer M E. 2001. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment, 77(3): 251-274. Gara T W, Murwira A, Chivhenge E, et al. 2014. Estimating wood volume from canopy area in deciduous woodlands of Zimbabwe. Southern Forests: A Journal of Forest Science, 76(4): 237-244. Güneralp I, Filippi A M, Randall J. 2014. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. International Journal of Applied Earth Observation and Geoinformation, 33: 119-126. Haralick R M, Shanmugam K. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6): 610-621. Huete A, Didan K, Miura T, et al. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1): 195-213. Kaufman Y J, Tanre D. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 261-270. Kelsey K C, Neff J C. 2014. Estimates of aboveground biomass from texture analysis of Landsat imagery. Remote Sensing, 6(7): 6407-6422. Lee J H, Philpot W D. 1991. Spectral texture pattern matching: a classifier for digital imagery. IEEE Transactions on Geoscience and Remote Sensing, 29(4): 545-554. Li S, Harner E J, Adjeroh D A. 2011. Random KNN feature selection-a fast and stable alternative to random forests. BMC Bioinformatics, 12(1): 1-11. Lu D. 2005. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26(12): 2509-2525. Lu D. 2006. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7): 1297-1328. Ranson K J, Sun G. 1994. Mapping biomass of a northern forest using multifrequency SAR data. IEEE Transactions on Geoscience and Remote Sensing, 32(2): 388-396. Reese H, Nilsson M, Sandström P, et al. 2002. Applications using estimates of forest parameters derived from satellite and forest inventory data. Computers and Electronics in Agriculture, 37(1): 37-55. Rouse J W J, Haas R H, Schell J A, et al. 1974. Monitoring vegetation systems in the great plains with ERTS. NASA Special Publication, 351: 309. Sarker L R, Nichol J E. 2011. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 115(4): 968-977. Sarker M L R, Nichol J, Iz H B, et al. 2013. Forest biomass estimation using texture measurements of high-resolution dual-polarization C-band SAR data. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3371-3384. Strobl C, Boulesteix A L, Zeileis A, et al. 2007. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics, 8(1): 25. Tian X, Su Z, Chen E, et al. 2012. Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area. International Journal of Applied Earth Observation and Geoinformation, 14(1): 160-168. Tian X, Li Z, Su Z, et al. 2014. Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data. International Journal of Remote Sensing, 35(21): 7339-7362. Tokola T, Pitkänen J, Partinen S, et al. 1996. Point accuracy of a non-parametric method in estimation of forest characteristics with different satellite materials. International Journal of Remote Sensing, 17(12): 2333-2351. Troyanskaya O, Cantor M, Sherlock G, et al. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6): 520-525. Wilson B T, Lister A J, Riemann R I. 2012. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. Forest Ecology and Management, 271(3): 182-198. Wood J. 1996. The geomorphological characterisation of digital elevation models. United Kingdom:PhD thesis of University of Leicester. |