曹林,吴玉环,章艺,等. 2015. 外源水杨酸对铝胁迫下菊芋光合特性及耐铝性的影响. 水土保持学报, 29(4):260-266. (Cao L, Wu Y H, Zhang Y, et al. 2015. Effects of exogenous salicylic acid on photosynthetic characteristics and aluminum tolerance of Helianthus tuberosus under aluminum stress. Journal of Soil and Water Conservation, 29(4): 260-266.[in Chinese]) 杜润峰,郝文芳,王龙飞. 2012. 达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应. 草业学报, 21(2):51-61. (Du R F, Hao W F, Wang L F. 2012. Dynamicresponses onanti-oxidative defense system and lipidperoxidation of Lespedeza davurica to droughtstress and re-watering. Acta Prataculturae Sinica, 21(2):51-61.[in Chinese]) 封晓辉, 程瑞梅, 肖文发,等. 2013. 基于lpj-guess模型的鸡公山马尾松林生产力和碳动态. 林业科学, 49(4), 7-15. (Feng X H, Cheng R M, Xiao W F, et al. 2013. Productivity and carbon dynamic of the masson pine stands in Jigongshan region based on lpj-guess model. Scientia Silvae Sinicae, 49(4), 7-15.[in Chinese]) 高俊凤. 2006. 植物生理学实验指导. 北京: 高等教育出版社, 218-219. (Gao J F. 2006. Plant physiology experimental guidance. Beijing: Higher Education Press, 218-219.[in Chinese]) 侯福林. 2015. 植物生理学实验教程. 北京: 科学出版社, 105-106. (Hou F L. 2015. Plant physiology experiment cours. Beijing: Science Press, 105-106.[in Chinese]) 纪雨薇. 2016. 马尾松铝胁迫生理响应机制.重庆:西南大学硕士论文. (Ji Y W. 2016. Study on physiological response mechanism of Pinus massoniana Lamb. to aluminum stress. Chongding:MS thesis of Southwest University.[in Chinese]) 贾新平,邓衍明,孙晓波,等.2015. 盐胁迫对海滨雀稗生长和生理特性的影响. 草业学报, 24(12):204-212. (Jia X P, Deng Y M, Sun X B, et al. 2015. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum. Acta Prataculturae sinica, 24(12):204-212.[in Chinese]) 蒋琪,高智席,吕朝燕,等. 2016. 植物耐铝毒作用机制研究进展. 南方农业, 10(18):211-213+215. (Jiang Q, Gao Z X, Lü Z Y, et al. 2016. Progress in the mechanism of plant aluminum toxicity. South China Agriculture, 10(18):211-213+215.[in Chinese]) 蒋时姣,钟宇,刘海鹰,等. 2015. 铝胁迫对柳杉组培苗生长及生理特性的影响. 植物生理学报, 1(2):227-232. (Jiang S J, Zhong Y, Liu H Y, et al. 2015. Effects of aluminum stress on growth and some physiological characteristics in Cryptomeria fortunei tissue culture seedlings. Plant Physiology Communications, 1(2): 227-232.[in Chinese]) 金婷婷,刘鹏,张志祥,等. 2009. 外源柠檬酸缓解大豆根系短期铝胁迫的FTIR特征分析. 光谱学与光谱分析, 29(2):367-371. (Jin T T, Liu P, Zhang Z X, et al. 2009. Analysis of soybean (Glycine max Merrill)treated with exogenous citric acid pluss short time aluminum stress by direct determination of FTIR spectrum. Spectroscopy and Spectral Analysis, 29(2): 367-371.[in Chinese]) 李力,刘玉民,王敏,等, 2014. 3种北美红枫对持续高温干旱胁迫的生理响应机制. 生态学报, 34(22):6471-6480. (Li L, Liu Y M, Wang M, et al. 2014. Physiological response mechanism of three kinds of Acer rubrum L. under continuous high temperature and drought stress. Acta Ecologica Sinica, 34(22): 6471-6480.[in Chinese]) 李璇,王升,岳红,等. 2011. 不同pH值和酶提取体系对丹参抗氧化酶活性的影响. 中国现代中药, 13(12):46-49. (Li X, Wang S, Yue H, et al. 2011. Effects of different pH value and enzyme extraction system on antioxidant enzyme activities in Salvia miltiorrhiza. Modern Chinese Medicine, 13(12): 46-49.[in Chinese]) 李朝苏,刘鹏,徐根娣,等. 2006. 外源有机酸对荞麦幼苗铝毒害的缓解效应. 作物学报, 32(4):532-539. (Li Z S, Liu P, Xu G D, et al. 2006. Effects of exogenous organic acids on aluminum toxicity in buckwheat seedlings. Acta Agronomica Sinica, 32(4): 532-539.[in Chinese]) 刘厚田,田仁生. 1992. 重庆南山马尾松衰亡与土壤铝活化的关系. 环境科学学报, 12(3):297-305. (Liu H T, Tian R S. 1992. Effects of Pinus massoniana decay and soil aluminum activation in Nanshan mountain, Chongqing. Acta Scientiae Circumstantiae, 12(3):297-305.[in Chinese]) 罗应华,孙冬婧,林建勇,等. 2013. 马尾松人工林近自然化改造对植物自然更新及物种多样性的影响. 生态学报, 33(19):6154-6162. (Luo Y H, Sun D J, Lin J Y, et al. 2013. Effect of close-to-nature management on the natural regeneration and species diversity in a masson pine plantation. Acta Ecologica Sinica, 33(19), 6154-6162.[in Chinese]) 覃蔡清,梁丽,游蕊,等. 2015. 柠檬酸对三峡水库消落区土壤中汞活化及甲基化的影响. 环境科学,(12):4494-4500. (Qin C Q, Liang L, You R, et al. 2015. Effects of citric acid on activation and methylation of mercury in soil of the Three Gorges Reservoir. Environmental Science,(12): 4494-4500.[in Chinese]) 孙远秀,邱爽,张伟伟,等. 2016. 柠檬酸对西瓜幼苗铝毒害的缓解作用. 核农学报, 30(10):2072-2079. (Sun Y X, Qiu S, Zhang W W, et al. 2016. Ecological effects of citric acid on aluminum toxicity in watermelon seedlings. Acta Agriculturae Nucleatae Sinica, 30(10): 2072-2079.[in Chinese]) 王丹,宣继萍,郭海林,等. 2011. 结缕草的抗寒性与体内碳水化合物、脯氨酸、可溶性蛋白季节动态变化的关系. 草业学报, 20(4):98-107. (Wang D, Xuan J P, Guo H L, et al. 2011. Seasonal changes of freezing tolerance and its relationship to the contents of carbohydrate, proline, and soluble protein of Zoysia. Acta Prataculturae sinica, 20(4):98-107.[in Chinese]) 王学奎. 2006. 植物生理生化实验原理和技术. 北京:高等教育出版社, 134-136,118-119,190-191. (Wang X K. 2006. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 134-136,118-119,190-191.[in Chinese]) 吴道铭,曹华苹,沈宏. 2014. 生长素及其运输蛋白对植物铝胁迫的响应. 植物生理学报, 12(08):1135-1143. (Wu D M, Cao H P, Shen H. 2014. Response of auxin and its transporterto aluminumstress in plants. Plant Physiology Journal, 12(8):1135-1143.[in Chinese]) 夏钦,何丙辉,刘玉民,等. 2010. 高温胁迫对粉带扦插苗形态和生理特征的影响. 生态学报, 30(19):5217-5224. (Xia Q, He B H, Liu Y M, et al. 2010. Effects of high temperature stress on morphological and physiological characteristics in Scaerolaalb ida cutting seedlings. Acta Ecologica Sinica, 30(19): 5217-5224.[in Chinese]) 相昆,徐颖,李国田,等. 2016. 外源NO对低温胁迫下核桃幼苗活性氧代谢的影响. 林业科学, 52(1):143-149. (Xiang K, Xu Y, Li G T, et al. 2016. Effects of exogenous nitric oxide on reactire oxygen metabolism of walnut seedlings under low temperature stress. Scientia Silvae Sinicae, 52(1): 143-149.[in Chinese]) 萧浪涛,王三根. 2005. 植物生理实验技术. 北京:中国农业出版社. (Xiao L T, Wang S G. 2005. Plant physiological experiment technology. Beijing:China Agricultural Publishing House,[in Chinese]) 徐圆圆,陆明英,蒋维昕,等. 2016. 铝胁迫下不同耐铝型桉树无性系根和叶抗氧化特征的差异. 浙江农林大学学报, 33 (6):1009-1016. (Xu Y Y, Lu M Y, Jiang W X, et al. 2016. Al stress withlipid peroxidation and antioxidantenzyme activitiesin eucalyptus roots and leaves. Journal of Zhejiang A&F University, 33(6):1009-1016.[in Chinese]) 杨野,王巧兰,耿明建,等. 2010. 生长素对铝胁迫下不同耐铝性小麦根苹果酸分泌的影响. 中国农业科学, 43(10): 2016-2022. (Yang Y, Wang Q L, Geng M J, et al. 2010. Effect of auxinonAl-inducedmalic acid effluxin wheatwithdifferentialAltolerance. Scientia Agricultura Sinica, 43(10):2016-2022.[in Chinese]) 张盛楠,刘亚敏,刘玉民,等. 2016. 马尾松幼苗生长及生理特性对铝胁迫的响应. 西北植物学报, 36(10):2022-2029. (Zhang S N, Liu Y M, Liu Y M, et al. 2016. Response of growth and physiological characteristics of Pinus massoniana seedlings to aluminum stress. Acta Botanica Boreali-Occidentalia Sinica, 36(10):2022-2029.[in Chinese]) 张蜀秋. 2011. 植物生理学实验技术教程. 北京:科学出版社, 197-198. (Zhang S Q.2011.Plant physiology experiment technology course.Beijing:Science Press, 197-198.[in Chinese]) Campos P S, Quartin V, Ramalho J C, et al. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Plants. Journal of Plant Physiology, 160(3):283-292. Choudhary A K., Singh D, Iquebal M A. 2011. Selection of pigeonpea genotypes for tolerance to aluminium toxicity. Plant Breeding, 130(4):492-495. Daniel da S de J, Andre D de A N. 2013. Aluminum tolerance in Sunflower plants is associated with phosphorus content in the roots. Communications in Soil Science and Plant Analysis, 44(22):3423-3430.. Gillard J. 2015. Constrained principal component analysis and related techniques. Journal of Applied Statistics, 42(4):916-916. Hartwell B L, Pember F R. 1918. The presence of aluminium as a reason for the difference in the effect of so-called acid soil on barley and rye.Soil Sci, 6(4):259-280. Hayat S, Hayat Q, Alyemeni M N, et al. 2012. Role of proline under changing environments: a review. Plant Signal Behav, 7(11):1456-1466. Ma Z, Miyasaka S C. 1998. Oxalate Exudation by Taro in Response to Al. Plant Physiology, 118(3):861-865. Maejima E, Osaki M, Wagatsuma T, et al. 2017. Contribution of constitutive characteristics of lipids and phenolics in roots of tree species in Myrtales to aluminum tolerance. Physiologia plantarum, 160(1):11-20. Martins N, Goncalves S, Andrade P B, et al. 2013. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress. Plant Science, 198(1):1-6. Marina S, Nata-ja Š. 2010. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings(Triticum aestivum L.). Ekologija, 56(2):26-33. Miyasaka S C, Buta J G, Howell R K, et al. 1991. Mechanism of aluminum tolerance in snapbeans root exudation of citric acid. Plant Physiol, 96(3):737-743. Peng C, Liang X, Liu E E, et al. 2017. The oxalyl-CoA synthetase-regulated oxalate and its distinct effects on resistance to bacterial blight and aluminium toxicity in rice. Plant Biology, 19(3):345-353 Silva I R, Smyth T J, Raper C D, et al. 2001. Differential aluminum tolerance in soybean: an evaluation of the role of organic acids. Physiologia Plantarum, 112(2):200-210. Shahnaz G, Shekoofeh E, Kourosh D, et al. 2011. Interactive effects of silicon and aluminum on the malondialdehyde(MDA), proline, protein and phenolic compounds in Borago officinalis L. J Med Plants Res, 5(24):5818-5827. Wenzl P, Chaves A L, Patino G M, et al. 2002. Aluminum stress stimulates the accumulation of organic acids in root apices of Brachiaria species. Journal of Plant Nutrition and Soil Science,165(5):582-588. Xu G D, Liu D, Wu Y H, et al. 2015. Effects of exogenous salicylic acid on cell wall polysaccharides and aluminum tolerance of trichosanthes kirilowii under aluminum toxicity. Pakistan Journal of Botany, 47(5):1649-1655. Zhao Z Q, Ma J F, Kazuhiro S, et al. 2003. Differential Al resistance and citrate secretion in Barley(Hordeum vulgare L.). Planta, 217(5):794-800. |