陈鹏宇. 2011. 帽儿山林场地表死可燃物含水率直接估计法的误差分析. 哈尔滨: 东北林业大学硕士学位论文.
邸雪颖. 1993. 林火预测预报. 哈尔滨: 东北林业大学出版社.
傅泽强, 陈 动, 王玉彬. 2001. 大兴安岭森林火灾与气象条件的相互关系. 东北林业大学学报, 29(1): 12-15.
何忠秋, 张成钢, 牛永杰. 1996. 森林可燃物湿度研究综述. 世界林业研究, (5): 26-30.
胡海清. 2005. 林火生态与管理. 北京: 中国林业出版社.
胡海清, 赵致奎, 王晓春, 等. 2010. 基于树轮火疤塔河蒙克山樟子松林火灾的频度分析. 生态学报, 30(23): 6372-6379.
胡海清, 魏书精, 孙 龙. 2012. 大兴安岭2001—2010年森林火灾碳排放的计量估算. 生态学报, 32(17): 5373-5386.
胡远满, 徐崇刚, 常 禹, 等. 2004. 空间直观景观模型LANDIS在大兴安岭呼中林区的应用. 生态学报, 24(9): 1846-1856.
金 森, 李 亮. 2010. 时滞和平衡含水率的直接估计法的有效性分析. 林业科学, 46(2): 95-102.
金 森, 陈鹏宇. 2011a. 樟子松针叶床层结构对失水过程中含水率参数的影响. 林业科学, 47(4): 114-120.
金 森, 李 亮, 赵玉晶. 2011b. 用直接估计法预测落叶松枯枝含水率的稳定性和外推误差分析. 林业科学, 47(6): 114-121.
李晓娜, 贺红士, 吴志伟, 等. 2012. 大兴安岭北部森林景观对气候变化的响应. 应用生态学报, 23(12): 3227-3235.
刘志华, 常 禹, 陈宏伟, 等. 2008. 大兴安岭呼中林区地表死可燃物载荷量空间格局. 应用生态学报, 19(3): 487-493.
刘 曦, 金 森. 2007. 平衡含水率法预测死可燃物含水率的研究进展. 林业科学, 43(12): 126-133.
邱 扬, 李湛东, 张玉钧, 等. 2006. 火干扰对大兴安岭北部原始林下层植物多样性的影响. 生态学报, 26(9): 2863-2869.
舒 展. 2011. 气候变化对大兴安岭塔河林业局森林火灾的影响研究. 哈尔滨: 东北林业大学博士学位论文.
王会研, 李 亮, 金 森, 等. 2008. 一种新的可燃物含水率预测方法介绍. 森林防火, 99(4): 11-12.
王文娟, 常 禹, 刘志华, 等. 2009. 大兴安岭呼中林区地表死可燃物含水量及其环境梯度分析. 生态学杂志, 28(2): 209-215.
周以良. 1991. 中国大兴安岭植被. 北京: 科学出版社.
Anderson H E, Schuetle R D, Mutch R W. 1978. Timelag and equilibrium moisture content of ponderosa pine needles. Ogden, UT: Intermountain Forest and Range Experiment Station, Forest Service, United States Department of Agriculture.
Anderson H E. 1990. Predicting equilibrium moisture content of some foliar forest litter in the northern Rocky Mountains. USDA Forest Service Research Paper INT-429, Ogden, UT: Intermountain Forest and Range Experiment Station, Forest Service, United States Department of Agriculture.
Catchpole E A, Catchpole W R, Viney N R, et al. 2001. Estimating fuel response time and predicting fuel moisture content from field data. International Journal of Wildland Fire, 10: 215-222.
Chuvieco E, Aguado I, Dimitrakopoulos A P. 2004. Conversion of fuel moisture content values to ignition potential for integrated fire danger assessment. Canadian Journal of Forest Research, 34: 2284-2293.
Deeming J E, Burgan R E, Cohen J D. 1978. The nation fire danger rating system-1978. Washington DC: Forest Service, United States Department of Agriculture.
Fosberg M A, Deeming J E. 1971. Derivation of the 1-and 10-hour timelag fuel moisture calculations for fire-danger rating. USDA Forest Service Research Note RM-207, Fort Collins, CO: Rocky Mountain Forest and Range Experiment Station, Forest Service, United States Department of Agriculture.
Jin S, Chen P Y. 2012. Modelling drying processes of fuelbeds of Scots pine needles with initial moisture content above the fibre saturation point by two-phase models. International Journal of Wildland Fire, 21: 418-427.
Lawson D B, Armitage O B, Hoskins W D. 1996. Diurnal variation on the fine fuel moisture code: tables and computer source code. FRDA Report 245, SSN 0835-752, Victoria, BC: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.
Luke R H, McArthur A G. 1978. Bushfires in Australia. Canberra: Australian Government Publishing Service.
Matthews S. 2006a. A process-based model of fine fuel moisture.
International Journal of Wildland Fire, 15: 155-168.
Matthews S, McCaw W L. 2006b. A next-generation fuel moisture model for fire behaviour prediction.
Forest Ecology and Management, 234: S91.
Matthews S, Gould J, McCaw L. 2010. Simple models for predicting dead fuel moisture in eucalyptus forests.
International Journal of Wildland Fire, 19: 459-467.
Murano S L, Russell R N, Lawson B D. 1969. Development of diurnal adjustments table for the fine fuel moisture code. Canadian Forestry Service, Information Report BC-X-35, Columbia: Pacific Forest Research Centre.
Nelson R M. 1984. A method for describing equilibrium moisture content of forest fuels.
Canadian Journal of Forest Research, 14: 597-600.
Nelson R M. 2000. Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research, 30: 1071-1087.
Rothermel R C, Wilson R A, Morris G A, et al. 1986. Modeling moisture content of fine dead wildland fuels: input to the behave fire prediction system. USDA Forest Service Research Paper INT-359, Ogden, UT: Intermountain Research Station. Forest Service, United States Department of Agriculture.
Simard A J. 1968. The moisture content of forest fuels. I. A review of the basis concepts. CDFRD Forest Fire Research Institute Information Report FF-X-14, Ottawa, ON: Canadian Department of Forest and Rural Development, Forest Fire Research Institute.
Trevitt A C F. 1988. Weather parameters and fuel moisture content: Standards for fire model inputs. Proceedings of the Conference on Bushfire Modelling and Fire Danger Rating Systems, Canberra, 11-12. |