林业科学 ›› 2025, Vol. 61 ›› Issue (7): 52-58.doi: 10.11707/j.1001-7488.LYKX20250190
• 综合评述 • 上一篇
收稿日期:
2025-04-02
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
崔丽娟
E-mail:wetlands108@126.com
基金资助:
Rumiao Wang1,2,Jing Li1,2,Weiwei Liu1,2,Lijuan Cui1,*()
Received:
2025-04-02
Online:
2025-07-20
Published:
2025-07-25
Contact:
Lijuan Cui
E-mail:wetlands108@126.com
摘要:
湿地作为陆地生态系统的重要组成部分,在维持全球碳平衡和缓解气候变化方面发挥着不可替代的重要作用。然而随着全球气候变化与人类活动干扰加剧,湿地普遍面临退化威胁,尤其是在植被退化引起植物性碳源输入减少的情景下,以植物-异养微生物为主导的碳循环途径遭到破坏,土壤碳汇功能显著减弱。本文聚焦湿地退化背景下土壤微生物代谢方式的响应与调节过程,梳理异养与自养微生物在碳固存过程中的关键生态功能与作用机制;强调微生物通过调节碳源利用策略与代谢通路转换表现出的代谢可塑性,是其在资源受限条件下维持固碳能力的关键适应方式;进一步探讨了微生物代谢可塑性在湿地生态恢复早期阶段对土壤有机质快速积累、食物网结构重建及生态功能恢复的潜在贡献。本文旨在深化对退化湿地土壤碳循环调控机制的认识,为退化湿地的生态恢复与功能重建提供理论支撑与科学依据。
中图分类号:
王汝苗,李晶,刘魏魏,崔丽娟. 微生物代谢可塑性对退化湿地固碳的调控机制及生态恢复启示[J]. 林业科学, 2025, 61(7): 52-58.
Rumiao Wang,Jing Li,Weiwei Liu,Lijuan Cui. Regulating Mechanisms of Microbial Metabolic Plasticity on Carbon Sequestration in Degraded Wetlands and Its Implications for Ecological Restoration[J]. Scientia Silvae Sinicae, 2025, 61(7): 52-58.
程澳琪, 康卫华, 李 为, 等. 岩溶区土壤微生物驱动的自养固碳过程与机制研究进展. 微生物学报, 2021, 61 (6): 1525- 1535. | |
Cheng A Q, Kang W H, Li W, et al. Research progress in the process and mechanisms of autotrophic carbon sequestration driven by soil microorganisms in Karst areas. Acta Microbiologica Sinica, 2021, 61 (6): 1525- 1535. | |
张润雨, 王家一, 朱 琳, 等. 湖泊大型水生植物与藻类分解的碳排放对比研究. 环境科学研究, 2025, 38 (5): 1058- 1066. | |
Zhang R Y, Wang J Y, Zhu L, et al. Comparative study on carbon emissions from the decomposition of macrophyte and algae in lakes. Research of Environmental Sciences, 2025, 38 (5): 1058- 1066. | |
朱雪峰, 孔维栋, 黄懿梅, 等. 土壤微生物碳泵概念体系 2.0. 应用生态学报, 2024, 35 (1): 102- 110. | |
Zhu X F, Kong W D, Huang Y M, et al. Soil microbial carbon pump conceptual framework 2.0. Chinese Journal of Applied Ecology, 2024, 35 (1): 102- 110. | |
Akinyede R, Taubert M, Schrumpf M, et al. Rates of dark CO2 fixation are driven by microbial biomass in a temperate forest soil. Soil Biology and Biochemistry, 2020, 150, 107950.
doi: 10.1016/j.soilbio.2020.107950 |
|
Alderson R, van Leeuwen C H A, Bakker E S, et al. 2025. Active wetland restoration kickstarts vegetation establishment, but natural development promotes greater plant diversity. Journal of Applied Ecology, 62(5): 1166–1176. | |
Banchi E, Corre E, Del Negro P, et al. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. Marine Life Science & Technology, 2024, 6 (1): 126- 142. | |
Chen H, Wang F, Kong W D, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem: a four-year small-scale field-plot observation on the Tibetan Plateau. Science of the Total Environment, 2021, 761, 143282.
doi: 10.1016/j.scitotenv.2020.143282 |
|
Chen X, Liu J W, Zhu X Y, et al. Phylogenetically and metabolically diverse autotrophs in the world’s deepest blue hole. ISME Communications, 2023, 3 (1): 117.
doi: 10.1038/s43705-023-00327-4 |
|
Ding X L, Ling N, Zhang W, et al. Distinct carbon incorporation from 13C-labelled rice straw into microbial amino sugars in soils applied with manure versus mineral fertilizer. Geoderma, 2023, 436, 116537.
doi: 10.1016/j.geoderma.2023.116537 |
|
Domeignoz-Horta L A, Pold G, Liu X A, et al. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 2020, 11 (1): 3684.
doi: 10.1038/s41467-020-17502-z |
|
Du L, Liu S Z, Ding Y, et al. Restoration from grazing on the Tibetan plateau: pathway-specific soil MAOC sequestration in meadow and peat wetlands. Journal of Environmental Management, 2024, 372, 123366.
doi: 10.1016/j.jenvman.2024.123366 |
|
Fan X L, Gao D C, Zhao C H, et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. The ISME Journal, 2021, 15 (8): 2248- 2263.
doi: 10.1038/s41396-021-00914-0 |
|
Fang Y, Liu J, Yang J, et al. Compositional and metabolic responses of autotrophic microbial community to salinity in lacustrine environments. mSystems, 2022, 7 (4): e00335- 22. | |
Feng X J, Dai G H, Liu T, et al. Understanding the mechanisms and potential pathways of soil carbon sequestration from the biogeochemistry perspective. Science China Earth Sciences, 2024, 67 (11): 3386- 3396.
doi: 10.1007/s11430-024-1359-9 |
|
Feng X J, Wang S M. Plant influences on soil microbial carbon pump efficiency. Global Change Biology, 2023, 29 (14): 3854- 3856.
doi: 10.1111/gcb.16728 |
|
Flemming H-C, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 2019, 17 (4): 247- 260.
doi: 10.1038/s41579-019-0158-9 |
|
Fluet-Chouinard E, Stocker B D, Zhang Z, et al. Extensive global wetland loss over the past three centuries. Nature, 2023, 614 (7947): 281- 286.
doi: 10.1038/s41586-022-05572-6 |
|
Hamard S, Planchenault S, Walcker R, et al. Microbial photosynthesis mitigates carbon loss from northern peatlands under warming. Nature Climate Change, 2025, 15 (4): 436- 443.
doi: 10.1038/s41558-025-02271-8 |
|
He X J, Abs E, Allison S D, et al. Emerging multiscale insights on microbial carbon use efficiency in the land carbon cycle. Nature Communications, 2024, 15 (1): 8010.
doi: 10.1038/s41467-024-52160-5 |
|
Hetharua B, Xu M, Sun S, et al. Temperature-driven nitrogen mixotrophy shapes marine cyanobacteria Prochlorococcus and Synechococcus latitudinal distribution pattern. Communications Earth & Environment, 2025, 6 (1): 149. | |
Huang C, Liu Q, Li Z L, et al. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions. Water Research, 2021, 188, 116526.
doi: 10.1016/j.watres.2020.116526 |
|
Huang J P, Yu H P, Guan X D, et al. Accelerated dryland expansion under climate change. Nature Climate Change, 2016, 6 (2): 166- 171.
doi: 10.1038/nclimate2837 |
|
Hügler M, Sievert S M. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual Review of Marine Science, 2011, 3, 261- 289.
doi: 10.1146/annurev-marine-120709-142712 |
|
Lal R, Monger C, Nave L, et al. The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376 (1834): 20210084.
doi: 10.1098/rstb.2021.0084 |
|
Li J S, Hao T X, Yang M, et al. Key processes of carbon cycle and sink enhancement paths in natural wetland ecosystems in China. Science China Earth Sciences, 2024a, 67 (8): 2444- 2459.
doi: 10.1007/s11430-023-1347-8 |
|
Li L Z, Zhao F, Filker S, et al. Microeukaryotes have unexpected importance in cold seep food webs through predation and parasitism. Progress in Oceanography, 2024b, 222, 103216.
doi: 10.1016/j.pocean.2024.103216 |
|
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2 (8): 17105.
doi: 10.1038/nmicrobiol.2017.105 |
|
Liang C, Zhu X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Science China Earth Sciences, 2021, 64 (4): 545- 558.
doi: 10.1007/s11430-020-9705-9 |
|
Liang H P, Xu Y, Sahu S K, et al. Chromosome-level genomes of two Bracteacoccaceae highlight adaptations to biocrusts. Nature Communications, 2025, 16 (1): 1492.
doi: 10.1038/s41467-025-56614-2 |
|
Liao H, Hao X L, Qin F, et al. Microbial autotrophy explains large-scale soil CO2 fixation. Global Change Biology, 2023, 29 (1): 231- 242.
doi: 10.1111/gcb.16452 |
|
Lin S Y, Zhou Y X, Wang W Q, et al. Losses and destabilization of soil organic carbon stocks in coastal wetlands converted into aquaculture ponds. Global Change Biology, 2024, 30 (9): e17480.
doi: 10.1111/gcb.17480 |
|
Liu X K, Wang Y J, Zhao Y K, et al. Microbial necromass carbon contributed to soil organic carbon accumulation and stabilization in the newly formed inland wetlands. Environmental Research, 2025, 264, 120397.
doi: 10.1016/j.envres.2024.120397 |
|
Lovelock C E, Adame M F, Bradley J, et al. An Australian blue carbon method to estimate climate change mitigation benefits of coastal wetland restoration. Restoration Ecology, 2023, 31 (7): e13739.
doi: 10.1111/rec.13739 |
|
Lu W Z, Xiao J F, Gao H Q, et al. Carbon fluxes of China’s coastal wetlands and impacts of reclamation and restoration. Global Change Biology, 2024, 30 (4): e17280.
doi: 10.1111/gcb.17280 |
|
Malard L A, Guisan A. Into the microbial niche. Trends in Ecology & Evolution, 2023, 38 (10): 936- 945. | |
Ning Z, Sheng Y Z, Gan S, et al. Metagenomic and isotopic insights into carbon fixation by autotrophic microorganisms in a petroleum hydrocarbon impacted red clay aquifer. Environmental Pollution, 2024, 361, 124824.
doi: 10.1016/j.envpol.2024.124824 |
|
Peng X, Wang S, Wang M X, et al. Metabolic interdependencies in thermophilic communities are revealed using co-occurrence and complementarity networks. Nature Communications, 2024, 15 (1): 8166.
doi: 10.1038/s41467-024-52532-x |
|
Saboret G, Stalder D, Matthews B, et al. Autochthonous production sustains food webs in large perialpine lakes, independent of trophic status: Evidence from amino acid stable isotopes. Freshwater Biology, 2023, 68 (5): 870- 887.
doi: 10.1111/fwb.14071 |
|
Schlaepfer D R, Bradford J B, Lauenroth W K, et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 2017, 8 (1): 14196.
doi: 10.1038/ncomms14196 |
|
Scott K M, Payne R R, Gahramanova A. Widespread dissolved inorganic carbon-modifying toolkits in genomes of autotrophic Bacteria and Archaea and how they are likely to bridge supply from the environment to demand by autotrophic pathways. Applied and Environmental Microbiology, 2024, 90 (2): e01557- 23. | |
Sokol N W, Slessarev E, Marschmann G L, et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology, 2022, 20 (7): 415- 430.
doi: 10.1038/s41579-022-00695-z |
|
Srivastava A, De Corte D, Garcia J A L, et al. Interplay between autotrophic and heterotrophic prokaryotic metabolism in the bathypelagic realm revealed by metatranscriptomic analyses. Microbiome, 2023, 11 (1): 239.
doi: 10.1186/s40168-023-01688-7 |
|
Steffens L, Pettinato E, Steiner T M, et al. High CO₂ levels drive the TCA cycle backwards towards autotrophy. Nature, 2021, 592 (7856): 784- 788.
doi: 10.1038/s41586-021-03456-9 |
|
Sun Y F, Yang M Q, Ding Y, et al. The contributions of dark microbial CO2 fixation to soil organic carbon along a tropical secondary forest chronosequence on Hainan Island, China. Catena, 2024, 247, 108556.
doi: 10.1016/j.catena.2024.108556 |
|
Tan J, Huang J F, Quan W H, et al. Divergence of microbial carbon use efficiency and soil organic carbon along a tidal flooding gradient in a subtropical coastal wetland. Water Research, 2025, 280, 123527.
doi: 10.1016/j.watres.2025.123527 |
|
Tao F, Huang Y Y, Hungate B A, et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature, 2023, 618 (7967): 981- 985.
doi: 10.1038/s41586-023-06042-3 |
|
Taubert M, Overholt W A, Heinze B M, et al. Bolstering fitness via CO₂ fixation and organic carbon uptake: mixotrophs in modern groundwater. The ISME Journal, 2022, 16 (4): 1153- 1162.
doi: 10.1038/s41396-021-01163-x |
|
Wang X P, Lu S F, Tan Z C, et al. Vegetation restoration increased the diversity and network complexity of carbon-fixing functional bacteria in heavily eroded areas of southern China. Catena, 2024, 243, 108195.
doi: 10.1016/j.catena.2024.108195 |
|
Wang X Y, Li W, Xiao Y T, et al. Abundance and diversity of carbon-fixing bacterial communities in Karst wetland soil ecosystems. Catena, 2021, 204, 105418.
doi: 10.1016/j.catena.2021.105418 |
|
Wu J Q, Ma W W, Li G, et al. Vegetation degradation along water gradient leads to soil active organic carbon loss in Gahai wetland. Ecological Engineering, 2020, 145, 105666.
doi: 10.1016/j.ecoleng.2019.105666 |
|
Xiao H B, Xu M, Wang Z, et al. Role of autotrophic microbes in organic matter accumulation in soils degraded by erosion. Land Degradation & Development, 2022, 33 (12): 2092- 2102. | |
Xiao K Q, Zhao Y, Liang C, et al. Introducing the soil mineral carbon pump. Nature Reviews Earth & Environment, 2023, 4 (3): 135- 136. | |
Yan X C, Chen Y C, Sun H, et al. River damming impacts on carbon emissions should be revisited in the context of the aquatic continuum concept. Environmental Science & Technology, 2024, 58 (40): 17529- 17531. | |
Yang N, Li Y, Lin L, et al. Dam-induced flow velocity decrease leads to the transition from heterotrophic to autotrophic system through modifying microbial food web dynamics. Environmental Research, 2022, 212, 113568.
doi: 10.1016/j.envres.2022.113568 |
|
Yuan H Z, Ge T D, Chen C Y, et al. Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology, 2012, 78 (7): 2328- 2336.
doi: 10.1128/AEM.06881-11 |
|
Yuan M H, Wang X, Li Y Z, et al. 2025. Alpine wetland degradation affects carbon cycle function genes but does not reduce soil microbial diversity. Catena, 249: 108637. | |
Zheng Z C, Liu B Y, Fang X, et al. Dryland farm soil may fix atmospheric carbon through autotrophic microbial pathways. Catena, 2022, 214, 106299.
doi: 10.1016/j.catena.2022.106299 |
[1] | 杭佳, 石云, 安婧婧, 贺达汉. 宁夏黄土丘陵区不同生态恢复生境中步甲对微生境的选择[J]. 林业科学, 2016, 52(1): 71-79. |
[2] | 赵垦田;杨小林;马和平;张新军. 拉萨半干旱河谷砂生槐灌丛生态恢复过程的群落特征与土壤微生物动态分析[J]. , 2013, 49(2): 15-20. |
[3] | 肖复明 范少辉 汪思龙 熊彩云 申正其. 湖南会同毛竹林土壤碳循环特征*[J]. 林业科学, 2009, 12(6): 11-15. |
[4] | 杨秀艳 雷海清 李发勇 闫田力 吴志钢 何家骅. 矾矿废弃地生态修复植物种的筛选*[J]. 林业科学, 2009, 12(4): 14-18. |
[5] | 沈国舫. 西部大开发中的生态环境建设问题——代笔谈小结[J]. 林业科学, 2001, 37(1): 1-6. |
[6] | 康文星 田大伦 刘煊章. 第二代杉木人工林生态恢复的研究 I.对温度的调节[J]. , 1997, 33(zk2): 47-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||