林业科学 ›› 2024, Vol. 60 ›› Issue (6): 25-36.doi: 10.11707/j.1001-7488.LYKX20230266
收稿日期:
2023-06-27
出版日期:
2024-06-25
发布日期:
2024-07-16
通讯作者:
孙睿
E-mail:sunrui@mail.bnu.edu.cn
基金资助:
Qi Li,Rui Sun*(),Jia Bai,Jingyu Zhang,Helin Zhang
Received:
2023-06-27
Online:
2024-06-25
Published:
2024-07-16
Contact:
Rui Sun
E-mail:sunrui@mail.bnu.edu.cn
摘要:
目的: 明确聚集指数和最大羧化速率遥感产品对BEPS模型估算植被生产力的影响。方法: 利用中国陆地通量站点观测数据,分析BEPS模型中聚集指数(CI)和最大羧化速率(Vcmax)的敏感性程度,并比较聚集指数和最大羧化速率遥感产品对植被生产力估算的精度提升作用。在此基础上估算2012年中国陆地生态系统植被生产力,通过与参数缺省值估算结果对比,研究CI和Vcmax的时空变化对模型估算结果的影响。结果: 1) CI和Vcmax均为BEPS模型中较为敏感的参数,两者均与植被生产力呈正相关关系,且不同植被类型下Vcmax敏感性均高于CI。2) 聚集指数和最大羧化速率遥感产品同时使用情况下,模拟结果的误差最小,精度最高,总初级生产力(GPP)均方根误差从665.60 g·m?2a?1降至584.71 g·m?2a?1,平均误差和相对平均误差均为4种模拟情况最低值。3) 2012年中国陆地生态系统GPP和净初级生产力(NPP)总量分别为5.21和 2.49 Pg·a?1,受CI遥感产品(NDHD-CI)和Vcmax遥感产品(SIF-Vcmax)的时空变化影响,GPP和NPP估算分别较模型缺省值偏低3.06%和4.72%。结论: NDHD-CI和SIF-Vcmax能够提升BEPS模型估算植被生产力的精度,未来可对其他高敏感度参数和模型机理进行优化改进。受CI和Vcmax时空变化影响,植被生产力估算结果略低于缺省情况。Vcmax对植被生产力估算影响高于CI。
中图分类号:
李琪,孙睿,柏佳,张静宇,张赫林. 聚集指数和最大羧化速率对基于遥感产品的植被生产力估算的影响[J]. 林业科学, 2024, 60(6): 25-36.
Qi Li,Rui Sun,Jia Bai,Jingyu Zhang,Helin Zhang. Effects of Clumping Index and Maximum Carboxylation Rate on Vegetation Productivity Estimation Based on Remote Sensing Data[J]. Scientia Silvae Sinicae, 2024, 60(6): 25-36.
图1
中国陆地生态系统地表覆盖类型 Cha: 长白山Changbaishan; Din: 鼎湖山Dinghushan; Qia: 千烟洲Qianyanzhou; Ha2: 海北1 Haibei 1; Cng: 长岭Changling; Dan: 当雄Dangxiong; Du2: 多伦Duolun; HaM: 海北2 Haibei 2; NMG: 内蒙古Neimenggu; YC: 禹城Yucheng; XSBN: 西双版纳Xishuangbanna; WAT: 水体Water bodies; BSV: 裸地Barren sparse vegetation; SNO: 冰雪Snow and ice; URB: 人造地表Urban and built-up lands; CRO: 作物Croplands; WET: 永久湿地Permanent wetlands; GRA: 草地Grasslands; SH: 灌丛Shrublands; MF: 混交林Mixed forests; DBF: 落叶阔叶林Deciduous broadleaf forests; DNF: 落叶针叶林Deciduous needle leaf forests; EBF: 常绿阔叶林Evergreen broadleaf forests; ENF: 常绿针叶林Evergreen needle leaf forests."
表1
通量观测站点一览表①"
站点 Site | 经度 Longitude(E) | 纬度 Latitude(N) | 植被类型 Vegetation type | 年份 Year |
长白山Changbaishan (Cha) | 128.10° | 42.40° | MF | 2003—2010 |
鼎湖山Dinghushan (Din) | 112.54° | 23.17° | EBF | 2003—2006,2008—2010 |
千烟洲Qianyanzhou (Qia) | 115.06° | 26.74° | ENF | 2003—2007, 2009 |
海北1 Haibei 1 (Ha2) | 101.33° | 37.61° | WET | 2003—2005 |
长岭Changling (Cng) | 123.51° | 44.59° | GRA | 2007—2010 |
当雄Dangxiong (Dan) | 91.07° | 30.50° | GRA | 2004—2005,2007—2009 |
多伦Duolun (Du2) | 116.28° | 42.05° | GRA | 2007—2008 |
海北2 Haibei 2 (HaM) | 101.18° | 37.37° | GRA | 2003—2004 |
内蒙古Neimenggu (NMG) | 116.18° | 44.08° | GRA | 2004—2005,2008 |
禹城Yucheng (YC) | 116.57° | 36.83° | CRO | 2003—2010 |
西双版纳Xishuangbanna (XSBN) | 101.25° | 21.93° | EBF | 2004 |
表2
聚集指数和最大羧化速率参数组合①"
参数组合 Parameter combinations | CI | Vcmax/(μmol·m?2s?1) |
组合1 Combinations one | 模型缺省值BEPS model default | 模型缺省值BEPS model default |
组合2 Combination two | 模型缺省值 BEPS model default | SIF-Vcmax遥感产品 SIF-Vcmax remote sensing data |
组合3 Combination three | NDHD-CI遥感产品 NDHD-CI remote sensing data | 模型缺省值 BEPS model default |
组合4 Combination four | NDHD-CI遥感产品NDHD-CI remote sensing data | SIF-Vcmax遥感产品 SIF-Vcmax remote sensing data |
表3
局部敏感性分析结果及含义"
序号 No. | 参数 Parameter | 含义 Definition |
1 | Vcmax (μmol·m?2s?1) | 最大羧化速率(25 ℃) Maximum carboxylation rate at 25 ?C |
2 | CI | 聚集指数 Clumping index |
3 | slope | 羧化速率与叶片含氮量的关系斜率参数 The slope of the maximum carboxylation rate–the leaf nitrogen content curve |
4 | N (g·m?2) | 叶片氮含量 Leaf nitrogen content |
5 | LAI_max_o | 冠层叶面积指数最大值 Maximum leaf area index for canopy |
6 | albedo_vis | 冠层可见光反照率 Albedo of canopy in visible band |
7 | albedo_nir | 冠层近红外反照率 Albedo of canopy in near infrared band |
8 | t1 | 土壤水有效性因子参数1 Parameter 1 that determines the sensitivity of root water uptake to soil temperature |
9 | t2 | 土壤水有效性因子参数2 Parameter 2 that determines the sensitivity of root water uptake to soil temperature |
10 | CO2 (μmol·mol?1) | 大气CO2浓度 Atmospheric CO2 concentration |
图2
不同站点植被生产力全局敏感性分析 Cha: 长白山Changbaishan; Din: 鼎湖山Dinghushan; Qia: 千烟洲Qianyanzhou; Ha2: 海北1 Haibei 1; Cng: 长岭Changling; Dan: 当雄Dangxiong; Du2: 多伦Duolun; HaM: 海北2 Haibei 2; NMG: 内蒙古Neimenggu; YC: 禹城Yucheng; XSBN: 西双版纳Xishuangbanna; slope: 羧化速率与叶片含氮量的关系斜率参数 The slope of slope of maximum carboxylation rate–the leaf nitrogen content curve; Vcmax: 最大羧化速率(25 ℃) Maximum carboxylation rate at 25 ̊C; CI: 聚集指数 Clumping index; CO2: 大气CO2浓度 Atmospheric CO2 concentration; N: 叶片氮含量 Leaf nitrogen content; LAI_max_o: 冠层叶面积指数最大值 Maximum leaf area index for canopy; albedo_vis: 冠层可见光反照率 Albedo of canopy in visible band; albedo_nir: 冠层近红外反照率 Albedo of canopy in near infrared band; t1: 土壤水有效性因子参数1 Parameter 1 that determines the sensitivity of root water uptake to soil temperature; t2: 土壤水有效性因子参数2 Parameter 2 that determines the sensitivity of root water uptake to soil temperature."
表5
不同植被类型GPP和NPP估算结果对比"
植被类型 Vegetation types | 单位 Unit /(g·m?2a?1) | 参数组合1 Parameter combination 1 | 参数组合2 Parameter combination 2 | 参数组合3 Parameter combination 3 | 参数组合4 Parameter combination 4 |
常绿针叶林 Evergreen needle leaf forest | GPP | 572.75 | 636.86 | 574.14 | 638.12 |
NPP | 338.51 | 386.59 | 339.55 | 387.54 | |
常绿阔叶林 Evergreen broadleaf forest | GPP | 812.57 | 807.22 | 825.34 | 819.64 |
NPP | 376.32 | 372.31 | 385.90 | 381.62 | |
落叶针叶林 Deciduous needle leaf forest | GPP | 628.90 | 691.50 | 627.06 | 688.89 |
NPP | 406.80 | 453.75 | 405.42 | 451.79 | |
落叶阔叶林 Deciduous broadleaf forest | GPP | 1 014.00 | 1 029.09 | 1 014.54 | 1 029.64 |
NPP | 572.65 | 583.96 | 573.05 | 584.38 | |
混交林 Mixed forest | GPP | 818.94 | 836.76 | 831.85 | 850.52 |
NPP | 444.31 | 457.68 | 454.00 | 468.00 | |
草地 Grassland | GPP | 395.87 | 384.19 | 391.99 | 380.84 |
NPP | 222.61 | 213.85 | 219.70 | 211.33 | |
农田 Farmland | GPP | 952.21 | 914.34 | 944.90 | 907.77 |
NPP | 386.33 | 357.54 | 380.77 | 352.54 |
蔡 毅, 邢 岩, 胡 丹. 敏感性分析综述. 北京师范大学学报(自然科学版), 2008, 44 (1): 9- 16. | |
Cai Y, Xing Y, Hu D. On sensitivity analysis. Journal of Beijing Normal University (Natural Science Edition), 2008, 44 (1): 9- 16. | |
何 亮, 赵 刚, 靳 宁, 等. 不同气候区和不同产量水平下APSIM-Wheat模型的参数全局敏感性分析. 农业工程学报, 2015, 31 (14): 148- 157. | |
He L, Zhao G, Jin N, et al. Global sensitivity analysis of APSIM-Wheat parameters in different climate zones and yield levels. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (14): 148- 157. | |
康振山, 张 莎, 白 雲, 等. 内蒙古草地净初级生产力时空变化及其对干旱的响应. 草地学报, 2021, 29 (1): 156- 165. | |
Kang Z S, Zhang S, Bai Y, et al. Spatio-temporal changes of grassland net primary productivity (NPP) in Inner Mongolia and its response to drought. Acta Agrestia Sinica, 2021, 29 (1): 156- 165. | |
李小文, 高 峰, 王锦地, 等. 遥感反演中参数的不确定性与敏感性矩阵. 遥感学报, 1997, 1 (1): 5- 14. | |
Li X W, Gao F, Wang J D, et al. Uncertainty and sensitivity matrix of parameters in inversion of physical BRDF model. Journal of Remote Sensing, 1997, 1 (1): 5- 14. | |
柳艺博. 2013. 基于遥感和过程模型的中国陆地生态系统水分利用效率时空变化特征研究. 南京: 南京大学. | |
Liu Y B. 2013. The spatial and temporal variations of water use efficiency in China’s terrestrial ecosystems simulated using remote sensing and a process-based model. Nanjing: Nanjing University. [in Chinese] | |
卢 伟, 范文义, 田 甜. 基于东北温带落叶阔叶林通量数据的BEPS模型参数优化. 应用生态学报, 2016, 27 (5): 1353- 1358. | |
Lu W, Fan W Y, Tian T. Parameter optimization of BEPS model based on the flux data of the temperate deciduous broad-leaved forest in Northeast China. Chinese Journal of Applied Ecology, 2016, 27 (5): 1353- 1358. | |
谭君位, 崔远来, 汪文超. 中国不同水稻生长环境下ORYZA(v3)模型参数全局敏感性分析. 农业工程学报, 2020, 36 (20): 153- 163. | |
Tan J W, Cui Y L, Wang W C. Global sensitivity analysis for ORYZA(v3) model under different rice growing environments in China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (20): 153- 163. | |
唐星林, 曹永慧, 顾连宏, 等. 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 2017, 37 (19): 6633- 6645. | |
Tang X L, Cao Y H, Gu L H, et al. Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 2017, 37 (19): 6633- 6645. | |
王 静, 车 涛, 戴礼云, 等. 被动微波遥感反演雪深与气象站观测雪深时空对比. 遥感学报, 2023, 27 (9): 2060- 2071. | |
Wang J, Che T, Dai L Y, et al. Spatio-temporal comparison of snow depth between passive microwave remote sensing inversion data and meteorological station observation data. National Remote Sensing Bulletin, 2023, 27 (9): 2060- 2071. | |
王三根. 2013. 植物生理生化. 北京: 中国林业出版社. | |
Wang S G. 2013. Plant physiology and biochemistry. Beijing: China Forest Publishing House. [in Chinese] | |
兴 安, 卓志清, 赵云泽, 等. 基于EFAST的不同生产水平下WOFOST模型参数敏感性分析. 农业机械学报, 2020, 51 (2): 161- 171. | |
Xing A, Zhuo Z Q, Zhao Y Z, et al. Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (2): 161- 171. | |
翟盘茂, 周琴芳. 中国大气水分气候变化研究. 应用气象学报, 1997, 8 (3): 342- 351. | |
Zhai P M, Zhou Q F. A study of climate changes of atmospheric water vapour in China. Quarterly Journal of Applied Meteorology, 1997, 8 (3): 342- 351. | |
张鑫磊, 刘连涛, 孙红春, 等. 不同施氮水平下棉花叶片最大羧化速率的高光谱估测. 农业工程学报, 2020, 36 (11): 166- 173. | |
Zhang X L, Liu L T, Sun C H, et al. Hyperspectral estimation of the maximum carboxylation rate of cotton leaves under different nitrogen levels. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (11): 166- 173. | |
张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 2012, 32 (18): 5907- 5917.
doi: 10.5846/stxb201108091168 |
|
Zhang Y M, Zhou G S. Advances in leaf maximum carboxylation rate and its response to environmental factors. Acta Ecologica Sinica, 2012, 32 (18): 5907- 5917.
doi: 10.5846/stxb201108091168 |
|
朱高龙. 2000~2013年中国植被叶片聚集度系数时空变化特征. 科学通报, 2016, 61 (14): 1595- 1603.
doi: 10.1360/N972015-00987 |
|
Zhu G L. Spatial-temporal characteristics of foliage clumping index in China during 2000-2013. Chinese Science Bulletin, 2016, 61 (14): 1595- 1603.
doi: 10.1360/N972015-00987 |
|
邹 娴. 2018. 基于遥感过程模型的农田NPP估算及参数敏感性研究. 南京: 南京信息工程大学. | |
Zou X. 2018. Simulation of NPP in farm lands and sensitivity analysis of parameters based on remote sensing and process-based model. Nanjing: Nanjing University of Information Science & Technology. [in Chinese] | |
Albert L P, Wu J, Prohaska N, et al. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist, 2018, 219 (3): 870- 884.
doi: 10.1111/nph.15056 |
|
Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 1998, 4 (2): 185- 198.
doi: 10.1046/j.1365-2486.1998.00125.x |
|
Chen B, Wang P Y, Wang S Q, et al. Simulating canopy carbonyl sulfide uptake of two forest stands through an improved ecosystem model and parameter optimization using an ensemble Kalman filter. Ecological Modelling, 2023, 475, 110212.
doi: 10.1016/j.ecolmodel.2022.110212 |
|
Chen J M, Mo G, Pisek J, et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles, 2012, 26, 18. | |
Cui T X, Sun R. 2018. Spatially simulation of solar-induced chlorophyll fluorescence using an extended BEPS model. 7th Digital Earth Summit (DES-2018), 110-113. | |
Dong Y D, Jiao Z T, Yin S Y, et al. Influence of snow on the magnitude and seasonal variation of the clumping index retrieved from MODIS BRDF products. Remote Sensing, 2018, 10 (8): 15. | |
Friedlingstein P, Cox P, Betts R, et al. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. Journal of Climate, 2006, 19 (14): 3337- 3353.
doi: 10.1175/JCLI3800.1 |
|
Gu C Y, Du H Q, Mao F J, et al. Global sensitivity analysis of PROSAIL model parameters when simulating Moso bamboo forest canopy reflectance. International Journal of Remote Sensing, 2016, 37 (22): 5270- 5286.
doi: 10.1080/01431161.2016.1239287 |
|
He L M, Chen J M, Liu J N, et al. Diverse photosynthetic capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements. Remote Sensing of Environment, 2019, 232, 10. | |
Hunt E R, Piper S C, Nemani R, et al. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochemical Cycles, 1996, 10 (3): 431- 456.
doi: 10.1029/96GB01691 |
|
Jiao Z T, Dong Y D, Schaaf C B, et al. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model. Remote Sensing of Environment, 2018, 209, 594- 611.
doi: 10.1016/j.rse.2018.02.041 |
|
Lin Y S, Medlyn B E, De Kauwe M G, et al. 2013. Biochemical photosynthetic responses to temperature: how do interspecific differences compare with seasonal shifts? Tree physiology, 33(8): 793-806. | |
Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 1997, 62 (2): 158- 175.
doi: 10.1016/S0034-4257(97)00089-8 |
|
Lu X, Croft H, Chen J M, et al. Estimating photosynthetic capacity from optimized Rubisco–chlorophyll relationships among vegetation types and under global change. Environmental Research Letters, 2022, 17 (1): 014028.
doi: 10.1088/1748-9326/ac444d |
|
Luo Y Q, Wu L H, Andrews J A, et al. Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecological Monographs, 2001, 71 (3): 357- 376. | |
Melillo J M, Mcguire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363 (6426): 234- 240.
doi: 10.1038/363234a0 |
|
Parton W J, Stewart J W B, Cole C V. Dynamics of C, N, P and S in grassland soils-a model. Biogeochemistry, 1988, 5 (1): 109- 131.
doi: 10.1007/BF02180320 |
|
Running S W, Coughlan J C. A general-model of forest ecosystem processes for regional applications. 1. Hydrologic balance, canopy gas-exchange and primary production processes. Ecological Modelling, 1988, 42 (2): 125- 154.
doi: 10.1016/0304-3800(88)90112-3 |
|
Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. 1. Model formulation. Journal of Climate, 1996, 9 (4): 676- 705.
doi: 10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2 |
|
Shao J, Zhou X H, Luo Y Q, et al. Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005. Journal of Geophysical Research-Biogeosciences, 2016, 121 (5): 1372- 1393.
doi: 10.1002/2015JG003062 |
|
Sun G D, Mu M. Applications of CNOP-P method to predictability studies of terrestrial ecosystems. Atmosphere, 2023, 14 (4): 617.
doi: 10.3390/atmos14040617 |
|
Walker A P, Beckerman A P, Gu L, et al. The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta–analysis and modeling study. Ecology and Evolution, 2014, 4 (16): 3218- 3235.
doi: 10.1002/ece3.1173 |
|
Wang L J, Niu Z. Sensitivity analysis of vegetation parameters based on PROSAIL model. Remote Sensing Technology and Application, 2014, 29 (2): 219- 223. | |
Wang P J, Xie D H, Zhang J H, et al. Sensitivity analysis for primary factors of the forest net primary productivity in Changbaishan Natural Reserve based on process model. Geographical Research, 2008, 27 (2): 323- 331. | |
Wang S Q, Li Y, Ju W, et al. Estimation of leaf photosynthetic capacity from leaf chlorophyll content and leaf age in a subtropical evergreen coniferous plantation. Journal of Geophysical Research:Biogeosciences, 2020, 125(2): e2019JG005020. | |
Woodward F I, Smith T M, Emanuel W R. A global land primary productivity and phytogeography mode. Global Biogeochemical Cycles, 1995, 9 (4): 471- 490.
doi: 10.1029/95GB02432 |
|
Xiao Z Q, Liang S L, Jiang B. Evaluation of four long time-series global leaf area index products. Agricultural and Forest Meteorology, 2017, 246, 218- 230.
doi: 10.1016/j.agrformet.2017.06.016 |
|
Xiao Z Q, Liang S L, Wang J D, et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (1): 209- 223.
doi: 10.1109/TGRS.2013.2237780 |
|
Xiao Z Q, Liang S L, Wang J D, et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (9): 5301- 5318.
doi: 10.1109/TGRS.2016.2560522 |
|
Zhang W W, Niu J F, Wang X K, et al. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China. Photosynthetica, 2011, 49, 29- 36.
doi: 10.1007/s11099-011-0003-5 |
[1] | 曾赞青,宋涵晴,高俊宏,王淼淼,武耀星,漆良华. 北京市森林植被固碳与能源碳排放时空变化及潜力预测[J]. 林业科学, 2023, 59(12): 51-60. |
[2] | 符庆成,邱尔发,张媛,王慧超,黄岚虹. 北京市银杏古树心腐特征及其影响因素[J]. 林业科学, 2023, 59(6): 130-140. |
[3] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
[4] | 扈梦梅,田龙,吴亚楠,杨晋宇,吕小翠,黄选瑞. 塞罕坝华北落叶松人工林间伐和混交改造对大型土壤动物群落结构的影响[J]. 林业科学, 2019, 55(11): 153-162. |
[5] | 黄力, 高祥阳, 齐猛, 周侠, 杨超, 李笑寒, 杨圣贺, 钱深华, 杨永川. 缙云山常绿阔叶林粗木质残体储量及特征[J]. 林业科学, 2019, 55(1): 103-109. |
[6] | 姚良锦, 姚兰, 易咏梅, 艾训儒, 冯广, 刘峻城, 陈斯, 黄伟, 丁易, 臧润国. 亚热带常绿落叶阔叶混交林优势种川陕鹅耳枥和多脉青冈的空间格局[J]. 林业科学, 2018, 54(12): 1-11. |
[7] | 杨林, 邓晶晶, 郭华, 胥焘, 王传华. 神农架次生林原生树种与引入树种树干附生地衣多样性差异[J]. 林业科学, 2017, 53(7): 149-158. |
[8] | 姚兰, 艾训儒, 易咏梅, 黄永涛, 冯广, 刘峻城. 鄂西南亚热带常绿落叶阔叶混交林优势种群的结构与动态特征[J]. 林业科学, 2017, 53(2): 10-18. |
[9] | 焦如珍, 董玉红, 丁之铨, 刘侠. 糖蜜发酵酒精废液生产生化黄腐酸的高产工艺参数优化[J]. 林业科学, 2016, 52(10): 89-95. |
[10] | 冯广, 艾训儒, 姚兰, 刘峻城, 黄永涛, 林勇. 鄂西南亚热带常绿落叶阔叶混交林的自然恢复动态及其影响因素[J]. 林业科学, 2016, 52(8): 1-9. |
[11] | 侯玉平, 魏巍, 翟文婷, 初航, 殷吉林, 柏新富, 卜庆梅. 山东半岛丘陵生境优势树种凋落物对外来植物火炬树种子萌发和幼苗生长的影响[J]. 林业科学, 2016, 52(6): 28-34. |
[12] | 王微, 胡凯, 党成强, 陶建平. 凋落物分解与细根生长的相互作用[J]. 林业科学, 2016, 52(4): 100-109. |
[13] | 张靖梓, 柏新富, 侯玉平, 董周焱, 卜庆梅. 山东半岛沿海防护林入侵植物美洲商陆及其伴生种生长竞争力的比较[J]. 林业科学, 2016, 52(3): 23-29. |
[14] | 姚兰, 崔国发, 易咏梅, 黄永涛, 冯广, 刘峻城, 艾训儒. 湖北木林子保护区大样地的木本植物多样性[J]. 林业科学, 2016, 52(1): 1-9. |
[15] | 杭佳, 石云, 安婧婧, 贺达汉. 宁夏黄土丘陵区不同生态恢复生境中步甲对微生境的选择[J]. 林业科学, 2016, 52(1): 71-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||