 
		林业科学 ›› 2021, Vol. 57 ›› Issue (1): 40-52.doi: 10.11707/j.1001-7488.20210105
李慧1,2,代新仁1,周再知2,李全梓1,*
收稿日期:2020-03-16
									
				
									
				
									
				
											出版日期:2021-01-01
									
				
											发布日期:2021-03-10
									
			通讯作者:
					李全梓
												基金资助:Hui Li1,2,Xinren Dai1,Zaizhi Zhou2,Quanzi Li1,*
Received:2020-03-16
									
				
									
				
									
				
											Online:2021-01-01
									
				
											Published:2021-03-10
									
			Contact:
					Quanzi Li   
												摘要:
目的: 鉴定日本落叶松木质部发育相关基因,构建核心基因与木质部发育相关基因的共表达网络,为后期开展日本落叶松木材形成相关研究提供参考。方法: 对日本落叶松木质部、韧皮部和针叶3个组织进行二代和三代转录组测序,利用R软件的DEseq2包筛选木质部相对韧皮部和木质部相对针叶的差异表达基因,通过整合2组差异基因获得木质部特异表达基因,借助GO、KEGG及BLASTN等生物信息学分析手段探索基因功能,利用WGCNA分析构建木质部特异表达基因共表达网络。结果: 共获得2 596个木质部特异的高表达和低表达基因;GO分析结果显示这些基因在代谢过程、细胞过程、定位膜、细胞、细胞组件、催化活性、位点结合和转运活性等分类中显著富集;KEGG分析结果显示这些基因在淀粉和蔗糖代谢、类黄酮生物合成和代谢途径通路中显著富集,在苯丙烷代谢途径及淀粉和蔗糖代谢途径中分别富集到38个和196个基因;鉴定出木材形成相关基因,包括木质素合成相关基因PAL4、CCR1、C4H、HCT、COMT1、PER12、PER52、CYP98A3、LAC12和LAC17等,纤维素和半纤维素合成相关基因DEC、CEL1、Csl、CTL2和SPS3等;2 596个木质部特异的高表达和低表达基因经WGCNA分析后筛选出与木质部发育相关基因关联度较高的17个核心基因。结论: 筛选的日本落叶松木质部发育相关基因参与半乳甘露聚糖合成、木葡聚糖合成、纤维素微纤丝形成、细胞壁纤维素合成、次生细胞壁形成过程、纤维伸长过程、调控合成木质素的碳代谢流、木质素生物合成及降解、木质素单体聚合、木质素单体甲基化和细胞程序化死亡等木材形成相关生物学过程;在共表达网络中筛选出的17个核心基因可作为今后研究的重点来探索其在木材形成过程中的具体功能。
中图分类号:
李慧,代新仁,周再知,李全梓. 日本落叶松木质部发育相关基因筛选及其共表达网络构建[J]. 林业科学, 2021, 57(1): 40-52.
Hui Li,Xinren Dai,Zaizhi Zhou,Quanzi Li. Screening and Co-Expression Network Building of Xylem Development-Related Genes in Larix kaempferi[J]. Scientia Silvae Sinicae, 2021, 57(1): 40-52.
 
												
												表2
日本落叶松与毛果杨的基因对应"
| 基因号 Gene ID | 毛果杨同源基因 Homolog in P.trichocarpa | 基因名 Gene name | 基因号 Gene ID | 毛果杨同源基因 Homolog in P.trichocarpa | 基因名 Gene name | |
| Lkgene 10602 | Potri.001G054600 | LAC17 | Lkgene8671 | Potri.005G195600 | PER12 | |
| Lkgene1213 | Potri.001G078900 | KOR | Lkgene6367 | Potri.005G203300 | F7D19.4 | |
| Lkgene5088 | Potri.001G083100 | MJC20.20 | Lkgene7691 | Potri.006G114400 | LRR-RLK | |
| Lkgene8137 | Potri.001G239300 | PLL4 | Lkgene11959 | Potri.006G136700 | SUS2 | |
| Lkgene19612 | Potri.001G312600 | UGT85A2 | Lkgene26047 | Potri.008G073700 | LAC12 | |
| Lkgene4380 | Potri.001G317600 | SPS3 | Lkgene13943 | Potri.010G141600 | HST | |
| Lkgene18758 Lkgene27841 | Potri.002G202300 | SUS2 | Lkgene1394 Lkgene2505 | Potri.003G183900 | HST | |
| Lkgene560 Lkgene979 Lkgene961 | Potri.004G089300 | F28G11.11 | Lkgene8640 Lkgene6881 Lkgene8812 Lkgene28309 Lkgene19434 | Potri.005G145300 | SBT1.7 | |
| Lkgene540 Lkgene816 | Potri.006G033300 | CYP98A3 | Lkgene166 Lkgene231 | Potri.013G157900 | CYP73A5 | |
| Lkgene416 | Potri.003G126800 | TUBB6 | Lkgene19432 | Potri.013G083600 | PER52 | |
| Lkgene1637 | Potri.003G151700 | KOR | Lkgene5019 | Potri.014G126900 | CEL1 | |
| Lkgene3952 | Potri.003G181400 | CCR1 | Lkgene1882 | Potri.014G197500 | — | |
| Lkgene3070 | Potri.015G003100 | OMTI | Lkgene7135 | Potri.017G029000 | T28P16.12 | |
| Lkgene1125 | Potri.017G057800 | SPS3 | Lkgene15312 | Potri.018G096100 | AXX17 | |
| Lkgene1643 | Potri.019G038200 | MS1 | Lkgene189 | Potri.019G049500 | 4CL2 | |
| Lkgene11485 | Potri.T070100.1 | MS2 | Lkgene15627 | — | — | 
 
												
												表3
木材形成相关基因功能注释"
| 基因 Gene | 拟南芥同源基因 Homolog in Arabidopsis | 基因名 Gene name | 注释 Annotation | 参考文献 Reference | 
| Lkgene393, 1210, 546, 10216, 1545, 189 | AT3G10340 | PAL4 | 催化L-苯丙氨酸生物合成中的第一反应Catalyze the first reaction in the biosynthesis from L-phenylalanine | |
| Lkgene3952 | AT1G15950 | CCR1 | 参与木质素合成的后期反应Involve in the latter stages of lignin biosynthesis | |
| Lkgene231, 166 | AT2G30490 | C4H | 调控合成木质素的碳代谢流Control carbon flux to lignins | |
| Lkgene19432 | AT5G05340 | PER52 | 木质素生物合成及降解Biosynthesis and degradation of lignin | |
| Lkgene4199, 8671 | AT1G71695 | PER12 | 木质素生物合成及降解Biosynthesis and degradation of lignin | |
| Lkgene1394, 2505 | AT5G48930 | HCT | 参与木质素合成Involve in the biosynthesis of lignin | |
| Lkgene3070, 834, 8363 | AT5G54160 | COMT1 | 催化木质素单体甲基化Catalyze the methylation of monolignols | |
| Lkgene5584, 540, 826, 816 | AT2G40890 | CYP98A3 | 参与木质素生物合成Essential for the biosynthesis of lignin | |
| Lkgene26047, 24638, 30550, 18632, 23499, 27977, 20214, 28123, 30125, 27556, 17746, 19212, 18598, 28597, 27567, 20222, 25143, 27539, 27532, 27443, 24826, 27783, 29817, 18090, 20304, 16114, 22264, 29559, 19527, 24209, 24522, 26047, 22691, 19315, 20120, 17571 | AT5G05390 | LAC12 | 木质素降解Degradation of lignin | |
| Lkgene2825, 12019, 19328, 27605, 21583, 13836, 13786, 5005, 16084, 12626, 17261, 16031, 5049, 5610, 15000, 10412, 25453, 30079, 29273, 20576, 10602, 13502, 15304 | AT5G60020 | LAC17 | 木质素单体聚合Polymerization of monolignols | |
| Lkgene24340, 114, 7969, 13943 | AT3G16920 | CTL2 | 纤维素合成及纤维素和半纤维素相互作用Biosynthesis of cellulose and interactions between hemicelluloses and cellulose | |
| Lkgene1782 | AT2G19860 | HXK2 | 调控细胞程序化死亡Regulate the execution of programmed cell death | |
| Lkgene2468, 1670, 3934, 811, 10000, 7280, 1786 | AT5G03760 | CSLA9 | 参与半乳甘露聚糖合成Participate in galactomannan biosynthesis | |
| Lkgene25783, 11296, 7496 | AT5G20950 | F22D1.120 | 参与木葡聚糖代谢Participate in xyloglucan metabolism | |
| Lkgene946, 1213, 1637 | AT5G49720 | DEC | 参与纤维素微纤维和次生细胞壁形成Require for cellulose microfibrils formation and secondary cell wall formation | |
| Lkgene5019 | AT1G70710 | CEL1 | 参与细胞壁纤维素形成Require for cellulose formation of the cell wall | |
| Lkgene1125, 5823, 4380, 6726, 12809, 2982 | AT1G04920 | SPS3 | 参与纤维伸长Regulate fiber elongation | 
| 丁昌俊, 张伟溪, 高暝, 等. 不同生长势美洲黑杨转录组差异分析. 林业科学, 2016, 52 (3): 47- 58. | |
| Ding C J , Zhang W X , Gao M , et al. Analysis of transcriptome differences among Populus deltoides with different growth potentials. Scientia Silvae Sinicae, 2016, 52 (3): 47- 58. | |
| 孙晓梅, 张守攻, 李时元, 等.  日本落叶松纸浆材优良家系多性状联合选择. 林业科学, 2005, 41 (4): 48- 54. doi: 10.3321/j.issn:1001-7488.2005.04.009 | |
| Sun X M ,  Zhang S G ,  Li S Y , et al.  Multi-traits selection of open-pollinated Larix kaempferi families for pulpwood purpose. Scientia Silvae Sinicae, 2005, 41 (4): 48- 54. doi: 10.3321/j.issn:1001-7488.2005.04.009 | |
| 徐宗昌, 孔英珍. 普通烟草CESA基因家族成员的鉴定、亚细胞定位及表达分析. 遗传, 2017, 39 (6): 512- 524. | |
| Xu Z C , Kong Y Z . Genome-wide identification, subcellular location and gene expression analysis of the member of CEAS gene family in common tobacco(Nicotiana tabacum L. ). Herditas, 2017, 39 (6): 512- 524. | |
| 杨立. 2016. 杨树PtoVNS11和PtoMYB156转录因子在次生壁形成及类黄酮代谢途径中的功能分析. 重庆: 西南大学博士学位论文. | |
| Yang L. 2016. Functional analysis of PtoVNS11 and PtoMYB156 transcription factors involved in secondary wall formation and flavonoid biosynthetic pathway in poplar. Chongqing: PhD thesis of Southwest University.[in Chinese] | |
| 周贤武, 张俊珍, 周海宾, 等. 树龄对日本落叶松木材物理力学性质的影响. 林业工程学报, 2014, 28 (4): 54- 57. | |
| Zhou X W , Zhang J Z , Zhou H B , et al. Tree age's effects on physical and mechanical properties of Larix kaempferi wood. Journal of Forestry Engineering, 2014, 28 (4): 54- 57. | |
| Allocco D J ,  Kohane I S ,  Butte A J .  Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinformatics, 2004, 5 (1): 18. doi: 10.1186/1471-2105-5-18 | |
| Amann K ,  Lezhneva L ,  Wanner G , et al.  ACCUMULATION OF PHOTOSYSTEM ONE1, a member of a novel gene family, is required for accumulation of. Plant Cell, 2004, 16 (11): 3084- 3097. doi: 10.1105/tpc.104.024935 | |
| Aoki K ,  Ogata Y ,  Shibata D .  Approaches for extracting practical information from gene co-expression networks in plant biology. Plant and Cell Physiology, 2007, 48 (3): 381- 390. doi: 10.1093/pcp/pcm013 | |
| Au K F ,  Underwood J G ,  Lee L , et al.  Improving PacBio long read accuracy by short read alignment. PLoS ONE, 2012, 7 (10): e46679. doi: 10.1371/journal.pone.0046679 | |
| Berthet S ,  Demont-Caulet N ,  Pollet B , et al.  Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23 (3): 1124- 1137. doi: 10.1105/tpc.110.082792 | |
| Brown D M ,  Zeef L A H ,  Ellis J , et al.  Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell, 2005, 17 (8): 2281- 2295. doi: 10.1105/tpc.105.031542 | |
| Carolin S , Bernard W , Soile J L , et al. Ethylene-related gene expression networks in wood formation. Frontiers in Plant Science, 2018, 272 (9): 1- 17. | |
| Carruthers M ,  Yurchenko A A ,  Augley J J , et al.  De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model Salmonid fish species. BMC Genomics, 2018, 19 (1): 32. doi: 10.1186/s12864-017-4379-x | |
| Chano V ,  de Heredia U L ,  Collada C , et al.  Transcriptomic analysis of juvenile wood formation during the growing season in Pinus canariensis.  Holzforschung, 2017, 71 (12): 919- 937. doi: 10.1515/hf-2017-0014 | |
| Chin C H ,  Chen S H ,  Wu H H , et al.  cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 2014, (Suppl 4): S11. doi: 10.1186/1752-0509-8-S4-S11 | |
| Conesa A ,  Götz S ,  García-Gómez J M , et al.  Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21 (18): 3674- 3676. doi: 10.1093/bioinformatics/bti610 | |
| Cronn R ,  Dolan P C ,  Jogdeo S , et al.  Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. BMC Genomics, 2017, 18 (1): 558. doi: 10.1186/s12864-017-3916-y | |
| Déjardin A ,  Laurans F ,  Arnaud D , et al.  Wood formation in Angiosperms. Comptes Rendus Biologies, 2010, 333 (4): 325- 334. doi: 10.1016/j.crvi.2010.01.010 | |
| Du H ,  Yu Y ,  Ma Y , et al.  Sequencing and de novo assembly of a near complete indica rice genome. Nature Communications, 2017, 8, 15324. doi: 10.1038/ncomms15324 | |
| Eid J ,  Fehr A ,  Gray J , et al.  Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323 (5910): 133- 138. doi: 10.1126/science.1162986 | |
| Hertzberg M ,  Aspeborg H ,  Schrader J , et al.  A transcriptional roadmap to wood formation. Proceedings of the National Academy of Sciences, 2001, 98, 14732- 14737. doi: 10.1073/pnas.261293398 | |
| Jokipii-Lukkari S ,  Delhomme N ,  Schiffthaler B , et al.  Transcriptional roadmap to seasonal variation in wood formation of Norway spruce. Plant Physiology, 2018, 176 (4): 2851- 2870. doi: 10.1104/pp.17.01590 | |
| Kajita S ,  Hishiyama S ,  Tomimura Y , et al.  Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate: coenzyme A ligase is depressed. Plant Physiology, 1997, 114 (3): 871- 879. doi: 10.1104/pp.114.3.871 | |
| Kim D , Langmead B , Salzberg S L . HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 2010, 12 (4): 357- 360. | |
| Kim M ,  Lim J H ,  Ahn C S , et al.  Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana.  Plant Cell, 2006, 18 (9): 2341- 2355. doi: 10.1105/tpc.106.041509 | |
| Kirst M ,  Johnson A F ,  Baucom C , et al.  Apparent homology of expressed genes from wood-forming tissues of loblolly pine(Pinus taeda L. ) with Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2003, 100 (12): 7383- 7388. doi: 10.1073/pnas.1132171100 | |
| Li J ,  Harata-Lee Y ,  Denton M D , et al.  Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis. Cell Discovery, 2017a, 3, 17031. doi: 10.1038/celldisc.2017.31 | |
| Li W F ,  Yang W H ,  Zhang S G , et al.  Transcriptome analysis provides insights into wood formation during larch tree aging. Tree Genetics & Genomes, 2017b, 13 (1): 1- 13. doi: 10.1007/s11295-017-1106-3/fulltext.html | |
| Li W Z ,  Godzik A .  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22 (13): 1658- 1659. doi: 10.1093/bioinformatics/btl158 | |
| Lorenz W W ,  Yu Y S ,  Dean J F .  An improved method of RNA isolation from loblolly pine(P. taeda L.) and other conifer species. Journal of Visualized Experiments, 2010, (36): 1751. doi: 10.3791/1751 | |
| Lorenzo M ,  Pinedo M ,  Equiza M , et al.  Changes in apoplastic peroxidase activity and cell wall composition are associated with cold-induced morpho-anatomical plasticity of wheat leaves. Plant Biology, 2019, (Suppl 1): 84- 94. doi: 10.1111/plb.12709 | |
| Lukens L ,  Downs G .  Bioinformatics techniques for understanding and analyzing tree gene expression data. Genomics of Tree Crops, 2012, 17- 38. doi: 10.1007/978-1-4614-0920-5_2 | |
| Luo W ,  Cao X ,  Xu X , et al.  Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus. Scientific Reports, 2016, 6, 31845. doi: 10.1038/srep31845 | |
| Lutfiyya L L ,  Xu N ,  D'Ordine R L , et al.  Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. Journal of Plant Physiology, 2007, 164 (7): 923- 933. doi: 10.1016/j.jplph.2006.04.014 | |
| Metzker M L .  Sequencing technologies-the next generation. Nature Reviews Genetics, 2010, 11 (1): 31- 46. doi: 10.1038/nrg2626 | |
| Moreau C ,  Aksenov N ,  Lorenzo M G , et al.  A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biology, 2005, 6 (4): R34. doi: 10.1186/gb-2005-6-4-r34 | |
| Moreau C ,  Pesquet E ,  Sjödin A , et al.  A unique program for cell death in xylem fibers of Populus stem. The Plant Journal, 2009, 58 (2): 260- 274. doi: 10.1111/j.1365-313X.2008.03777.x | |
| Nicol F ,  His I ,  Jauneau A , et al.  A plasma membrane-bound putative endo-1, 4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis.  The EMBO Journal, 1998, 17 (19): 5563- 5576. doi: 10.1093/emboj/17.19.5563 | |
| Ohashi-Ito K ,  Oda Y ,  Fukuda H .  Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell, 2010, 22 (10): 3461- 3473. doi: 10.1105/tpc.110.075036 | |
| Osakabe K ,  Tsao C C ,  Li L , et al.  Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proceedings of the National Academy of Sciences, 1999, 96 (16): 8955- 8960. doi: 10.1073/pnas.96.16.8955 | |
| Persson S ,  Wei H R ,  Milne J , et al.  Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences, 2005, 102 (24): 8633- 8638. doi: 10.1073/pnas.0503392102 | |
| Prigge M J ,  Otsuga D ,  Alonso J M , et al.  Class Ⅲ homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell, 2005, 17, 61- 76. doi: 10.1105/tpc.104.026161 | |
| Ren P ,  Meng Y ,  Li B , et al.  Molecular mechanisms of acclimatization to phosphorus starvation and recovery underlying full length transcriptome profiling in barley(Hordeum vulgare L. ). Frontiers in Plant Science, 2018, 9, 500. doi: 10.3389/fpls.2018.00500 | |
| Rigamonte T A ,  Silveira W B ,  Fietto L G , et al.  Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12. FEMS Yeast Research, 2011, 11 (3): 243- 251. doi: 10.1111/j.1567-1364.2010.00709.x | |
| Rottmann W H ,  Meilan R ,  Sheppard L A , et al.  Diverse effects of overexpression of LEAFY and PTLF, a poplar(Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis.  Plant Journal, 2000, 22 (3): 235- 245. doi: 10.1046/j.1365-313x.2000.00734.x | |
| Ru°ži Dč ka K ,  Ursache R ,  Hejátko J , et al.  Xylem development-from the cradle to the grave. New Phytologist, 2015, 207 (3): 519- 535. doi: 10.1111/nph.13383 | |
| Sampedro J ,  Valdivia E R ,  Fraga P , et al.  Soluble and membrane-bound β-glucosidases are involved in trimming the xyloglucan backbone. Plant Physiology, 2017, 173 (2): 1017- 1030. doi: 10.1104/pp.16.01713 | |
| Samuga A ,  Joshi C P .  Differential expression patterns of two new primary cell wall-related cellulose synthase cDNAs, PtrCesA6 and PtrCesA7 from aspen trees. Gene, 2004, 334, 73- 82. doi: 10.1016/j.gene.2004.02.057 | |
| Sanchez C ,  Bauer S ,  Hematy K , et al.  CHITINASE-LIKE1/POM-POM1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis.  Plant Cell, 2012, 24 (2): 589- 607. doi: 10.1105/tpc.111.094672 | |
| Schoch G ,  Goepfert S ,  Morant M , et al.  CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. Journal of Biological Chemistry, 2001, 276 (39): 36566- 36574. doi: 10.1074/jbc.M104047200 | |
| Secco D ,  Jabnoune M ,  Walker H , et al.  Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. Plant Cell, 2013, 25 (11): 4285- 4304. doi: 10.1105/tpc.113.117325 | |
| Sharon D ,  Tilgner H ,  Grubert F , et al.  A single-molecule long-read survey of the human transcriptome. Nature Biotechnology, 2013, 31 (11): 1009- 1014. doi: 10.1038/nbt.2705 | |
| Somerville R C ,  Chris R S .  The cellulose synthase superfamily. Plant Physiology, 2000, 124 (2): 495- 498. doi: 10.1104/pp.124.2.495 | |
| Song W ,  Jiang K ,  Zhang F , et al.  Transcriptome sequencing, de novo assembly and differential gene expression analysis of the early development of Acipenser baeri.  PLoS ONE, 2015, 10 (9): e0137450. doi: 10.1371/journal.pone.0137450 | |
| Suzuki S ,  Li L ,  Sun Y H , et al.  The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa.  Plant Physiology, 2006, 142 (3): 1233- 1245. doi: 10.1104/pp.106.086678 | |
| Tilgner H ,  Jahanbani F ,  Blauwkamp T , et al.  Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nature Biotechnology, 2015, 33 (7): 736- 742. doi: 10.1038/nbt.3242 | |
| Torre A R D L , Piot A , Liu B , et al. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evolutionary Applications, 2019, 13 (1): 210- 227. | |
| Valério L ,  Meyer M D ,  Penel C , et al.  Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 2004, 65 (10): 1331- 1342. doi: 10.1016/j.phytochem.2004.04.017 | |
| Wang J P ,  Matthews M L ,  Naik P P , et al.  Flux modeling for monolignol biosynthesis. Current Opinion in Biotechnology, 2019a, 56, 187- 192. doi: 10.1016/j.copbio.2018.12.003 | |
| Wang L ,  Jiang X ,  Wang L , et al.  A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis.  BMC Genomics, 2019b, 20 (1): 456. doi: 10.1186/s12864-019-5832-9 | |
| Xie L Q ,  Yang C J ,  Wang X L .  Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis.  Journal of Experimental Botany, 2011, 62 (13): 4495- 4506. doi: 10.1093/jxb/err164 | |
| Yan X ,  Liu J ,  Kim H , et al.  CAD 1 and CCR 2 protein complex formation in monolignol biosynthesis in Populus trichocarpa.  New Phytologist, 2019, 222 (1): 244- 260. doi: 10.1111/nph.15505 | |
| Ye Z H ,  Zhong R .  Molecular control of wood formation in trees. Journal of Experimental Botany, 2015, 66 (14): 4119- 4131. doi: 10.1093/jxb/erv081 | |
| Young M D ,  Wakefield M J ,  Smyth G K , et al.  Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 2010, 11 (2): R14. doi: 10.1186/gb-2010-11-2-r14 | |
| Zhang Y ,  Zhang S G ,  Han S Y , et al.  Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch(Larix leptolepis). Plant Cell Reports, 2012, 31 (9): 1637- 1657. doi: 10.1007/s00299-012-1277-1 | |
| Zhong R Q ,  Lee C H ,  Zhou J L , et al.  A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis.  Plant Cell, 2008, 20 (10): 2763- 2782. doi: 10.1105/tpc.108.061325 | 
| [1] | 吴晓雪, 张艾婧, 盖颖, 蒋湘宁. 外源激素对日本落叶松体细胞胚发生不同阶段的影响[J]. 林业科学, 2021, 57(1): 30-39. | 
| [2] | 夏国威, 孙晓梅, 陈东升, 张守攻. 日本落叶松冠层光合特性的空间变化[J]. 林业科学, 2019, 55(6): 13-21. | 
| [3] | 江成, 周厚君, 赵岩秋, 何辉, 楚立威, 宋学勤, 卢孟柱. 干旱和高盐胁迫下钙离子依赖核酸酶基因CDD对银腺杨84K生长发育的影响[J]. 林业科学, 2019, 55(2): 33-40. | 
| [4] | 张恩亮, 马玲玲, 杨如同, 李林芳, 汪庆, 李亚, 王鹏. IBA诱导楸树嫩枝扦插不定根发育的转录组分析[J]. 林业科学, 2018, 54(5): 48-61. | 
| [5] | 毛伟兵, 陈发菊, 王长兰, 梁宏伟. 楸树雄性不育花芽转录组测序及分析[J]. 林业科学, 2017, 53(6): 141-150. | 
| [6] | 党维, 姜在民, 李荣, 张硕新, 蔡靖. 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系[J]. 林业科学, 2017, 53(3): 49-59. | 
| [7] | 王滋, 王丽, 武国芳, 任海青, 赵荣军. 日本落叶松规格材齿板节点承载性能[J]. 林业科学, 2017, 53(11): 157-163. | 
| [8] | 张利, 徐向东, 王丽娟, 卢孟柱. 杨树蔗糖转运体基因PagSUT4的鉴定及功能分析[J]. 林业科学, 2016, 52(8): 21-28. | 
| [9] | 魏永成, 刘青华, 周志春, 丰忠平. 不同产脂量马尾松无性系木质部树脂道结构差异[J]. 林业科学, 2016, 52(7): 38-45. | 
| [10] | 汪攀, 吴鹏飞, 马祥庆, 陈奶莲, 张云鹏. 杉木根系细胞壁活化铁磷能力及其影响因子分析[J]. 林业科学, 2015, 51(9): 59-64. | 
| [11] | 程瑞梅, 刘泽彬, 封晓辉, 肖文发. 气候变化对树木木质部生长影响的研究进展[J]. 林业科学, 2015, 51(6): 147-154. | 
| [12] | 曹庆杰, 迟德富. 杨树品系抗杨干象水平及其与木质部和韧皮部硬度等关系[J]. 林业科学, 2015, 51(5): 56-67. | 
| [13] | 牛小云, 孙晓梅, 陈东升, 张守攻. 日本落叶松人工林枯落物土壤酶活性[J]. 林业科学, 2015, 51(4): 16-25. | 
| [14] | 焦云德, 孙晓梅, 赵鲲, 谢允慧, 张建祥, 杨艳红. 日本落叶松良种‘洛阳1号’[J]. 林业科学, 2015, 51(11): 146-146. | 
| [15] | 赖猛, 孙晓梅, 张守攻. 日本落叶松及其杂种无性系间的物候变异与早期选择[J]. 林业科学, 2014, 50(7): 52-57. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||