|  | 付宗营, 赵景尧, 蔡英春.  树盘干缩异向性引起应变的测算及分析. 中国工程科学, 2014. 164, 25- 29. doi: 10.3969/j.issn.1009-1742.2014.04.005
 | 
																													
																						|  | Fu Z Y ,  Zhao J Y ,  Cai Y C .  Investigation of tangential strain caused by shrinkage anisotropy using image analytical method. Engineering Sciences, 2014. 164, 25- 29. doi: 10.3969/j.issn.1009-1742.2014.04.005
 | 
																													
																						|  | 李坚.  木材科学. 北京: 科学出版社. 2014. 254 | 
																													
																						|  | Li J .  Wood science. Beijing: Science Press. 2014. 254 | 
																													
																						|  | 蒋佳荔, 吕建雄.  木材干燥应力的研究方法与进展. 木材工业, 2005. 192, 4- 7. | 
																													
																						|  | Jiang J L ,  Lü J X .  Review of research methods for wood drying stresses. China Wood Industry, 2005. 192, 4- 7. | 
																													
																						|  | 杨文斌, 陈眉雯.  利用神经网络预测木材径向导热系数. 林业科学, 2006. 423, 25- 28. | 
																													
																						|  | Yang W B ,  Chen M W .  Predicting the wood radial thermal conductivity using neural network. Scientia Silvae Sinicae, 2006. 423, 25- 28. | 
																													
																						|  | Avramidis S ,  Iliadis L .  Predicting wood thermal conductivity using artificial neural networks. Wood and Fiber Science, 2005a. 37, 682- 690. | 
																													
																						|  | Avramidis S ,  Iliadis L .  Wood-water sorption isotherm prediction with artificial neural networks:a preliminary study. Holzforschung, 2005b. 59, 336- 341. doi: 10.1515/HF.2005.055
 | 
																													
																						|  | Avramidis S ,  Iliadis L ,  Mansfield S D .  Wood dielectric loss factor prediction with artificial neural networks. Wood Science and Technology, 2006. 40, 563- 574. doi: 10.1007/s00226-006-0096-3
 | 
																													
																						|  | Avramidis S ,  Wu H W .  Artificial neural network and mathematical modeling comparative analysis of nonisothermal diffusion of moisture in wood. HolzalsRoh-und Werkstoff, 2007. 65, 89- 93. doi: 10.1007/s00107-006-0113-0
 | 
																													
																						|  | Bedelean B ,  Lazarescu C ,  Avramidis S .  Predicting RF heating rate during pasteurization of green softwoods using artificial neural networks and Monte Carlo method. Wood Research, 2015. 601, 83- 94. | 
																													
																						|  | Ceylan I .  Determination of drying characteristics of timber by using artificial neural networks and mathematical models. Drying Technology, 2008. 26, 1469- 1476. doi: 10.1080/07373930802412132
 | 
																													
																						|  | Esteban L G ,  Fernandez F G ,  Palacios P D .  MOE prediction in Abies pinsapo Boiss. timber:application of an artificial neural network using non-destructive testing. Computer and Structure, 2009. 87, 1360- 1365. | 
																													
																						|  | Fu Z Y ,  Zhao J Y ,  Huan S Q , et al.  The variation of tangential rheological properties caused by shrinkage anisotropy and moisture content gradient in white birch disks. Holzforschung, 2015. 695, 573- 579. | 
																													
																						|  | Hagan M T ,  Demuth H B ,  Beale M H .  Neural network design. Boston: PWS Publishing Company. 1996. | 
																													
																						|  | Iliadis L ,  Mansfield S D ,  Avramidis S , et al.  Predicting Douglas-fir wood density by artificial neural networks ANN based on progeny testing information. Holzforschung, 2013. 677, 771- 777. | 
																													
																						|  | Mansfield S D ,  Iliadis L ,  Avramidis S .  Neural network prediction of bending strength and stiffness in western hemlock Tsuga heterophylla Raf. Holzforschung, 2007. 616, 707- 716. | 
																													
																						|  | Myhara R M ,  Sablani S .  Unification of fruit water sorption isotherm using artificial neural networks. Drying Technology, 2001. 198, 1543- 1554. | 
																													
																						|  | Pang S .  Modelling of stress development during drying and relief during steaming in Pinus radiata lumber. Drying Technology, 2000. 188, 1677- 1696. | 
																													
																						|  | Sarle W S .  Stopped training and other remedies for overfitting. Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics, 1995. 352-360 | 
																													
																						|  | Tiryaki S ,  Hamzacebi C .  Predicting modulus of rupture MOR and modulus of elasticity MOE of heat treated woods by artificial neural networks. Measurement, 2014a. 49, 266- 274. doi: 10.1016/j.measurement.2013.12.004
 | 
																													
																						|  | Tiryaki S ,  Aydın A .  An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Construction and Building Materials, 2014b. 62, 102- 108. doi: 10.1016/j.conbuildmat.2014.03.041
 | 
																													
																						|  | Watanabe K ,  Matsushita Y ,  Kobayashi I , et al.  Artificial neural network modeling for predicting final moisture content of individual Sugi Cryptomeria japonica samples during air-drying. Journal of Wood Science, 2013. 59, 112- 118. doi: 10.1007/s10086-012-1314-2
 | 
																													
																						|  | Watanabe K ,  Kobayashi I ,  Matsushita Y , et al.  Application of near-infrared spectroscopy for evaluation of drying stress on lumber surface:a comparison of artificial neural networks and partial least squares regression. Drying Technology, 2014. 325, 590- 596. | 
																													
																						|  | Zhan J F ,  Avramidis S .  Mechano-sorptive creep of hemlock under conventional drying:ii. description of actual creep behavior in drying lumber. Drying Technology, 2011. 2910, 1140- 1149. | 
																													
																						|  | Zhang D Y ,  Sun L ,  Cao J .  Modeling of temperature-humidity for wood drying based on time-delay neural network. Journal of Forestry Research, 2006. 172, 141- 144. | 
																													
																						|  | Zhang D Y ,  Liu Y X ,  Cao J , et al.  Neural network prediction model of wood moisture content for drying process. Scientia Silvae Sinicae, 2008. 4412, 94- 98. |