刘耀诚,周和平,乔 梁. 2000. (YCa)F3助烧AIN陶瓷的显微结构和热导率. 无机材料学报,14(4):619-624. (Liu Y C, Zhou H P, Qiao L. 2000. Microstructure and thermal conductivity of aluminium nitride with (YCa)F3as sintering aid. Journal of Inorganic Materials, 15(4):619-624.[in Chinese]) 马 静,马建锋,张 逊,等. 2012. 拉曼光谱在植物细胞壁研究中的进展. 光谱学与光谱分析,32(5):1239-1243. (Ma J, Ma J F, Zhang X, et al. 2012. Application of the Raman spectroscopy to the study of plant cell walls. Spectroscopy and Spectral Analysis, 32(5):1239-1243.[in Chinese]) 徐德良,付 鑫,徐朝阳,等. 2015. 扫描热显微镜技术在生物质微观特性研究中的应用. 林产化学与工业,35(4):1-7. (Xu D L, Fu X, Xu C Y, et al. 2015. Micro characteristics of biomass investigated by scanning thermal microscopy. Chemical and Industry of Forest Products, 35(4):1-7.[in Chinese]) 徐德良,王思群,孙 军,等. 2014. 木材有效导热系数研究进展. 世界林业研究,27(2):39-44. (Xu D L, Wang S Q, Sun J, et al. 2014. Research progess of effective thermal conductivity coefficient of wood. World Forestry Research, 27(2):39-44.[in Chinese]) 俞昌铭. 2011. 多孔材料传热传质及其数值分析 北京:清华大学出版社. (Yu C M. 2011. Numerical nanlysis of heat and mass transfer for porous material. Beijing:Tsinghua University Press.[in Chinese]) 张智衡. 2013. 木材细胞壁超微结构及局部化学的研究. 北京:北京林业大学硕士学位论文,24-28. (Zhang Z H. 2013. Research on cell wall ultrastructure and topochemistry of wood. Beijing:MS thesis of Beijing Forestry Unversitry, 24-28.[in Chinese]) Agarwal U P. 2006. Raman imaging to investigate ultrastructure and composition of plant cell walls:distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta, 224(5):1141-1153. Agarwal U P, Ralph S A. 1997. FT-Raman spectroscopy of wood:identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Applied Spectroscopy, 51(11):1648-1655. Brandt B, Zollfrank C, Franke O, et al. 2010. Micromechanics and ultrastructure of pyrolysed softwood cell walls. Acta Biomaterialia, 6(11):4345-4351. Eitelberger J, Hofstetter K. 2011. Prediction of transport properties of wood below the fiber saturation point-a multiscale homogenization approach and its experimental validation. Composites Science and Technology, 71(2):134-144. Greene E S, Parks G S. 1941. Studies on glass ⅩⅦ. The thermal conductivity of glassy and liquid glucose. The Journal of Chemical Physics, 9(3):262-265. Konnerth J, Harper D, Lee S H, et al. 2008. Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (SThM). Holzforschung, 62(1):91-98. Lee S H, Wang S, Endo T, et al. 2009. Visualization of interfacial zones in lyocell fiber-reinforced polypropylene composite by AFM contrast imaging based on phase and thermal conductivity measurements. Holzforschung, 63(2):240-247. McConney M E, Singamaneni S, Tsukruk V V. 2010. Probing soft matter with the atomic force microscopies:imaging and force spectroscopy. Polymer Reviews, 50(3):235-286. Notburga G, Manfred S. 2006. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiology, 140(4):1246-1254. Sandeep S N. 2012. Nanoscale characterization of fiber/matrix interphase and its impact on the performance of natural fiber rein forced polymer composites. Knoxville:PhD thesis of University of Tennessee. Tirumalai V, Agarwal U, Obst J. 1996. Heterogeneity of lignin concentration in cell corner middle lamella of white birch and black spruce. Wood Science and Technology, 30(2):99-104. Vay O, Obersriebnig M, Müller U, et al. 2013. Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM). Holzforschung, 67(2):155-159. Xu D, Zhang Y, Zhou H, et al. 2015. Characterization of adhesive penetration in wood bond by means of scanning thermal microscopy (SThM). Holzforschung, 70(4):323-330. Zhang Z H, Ma J F, Ji Z, et al. 2012. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques. Microscopy & Microanalysis, 18(6):1-8. |