陈东来, 秦淑英. 1994. 树皮厚度、树皮材积与直径和树高相关关系的研究. 河北林学院学报, 9(3): 248-250. (Chen D L, Qin S Y. 1994. Studies on correlation of thickness and volume of tree bark to trunk diameter and height. Journal of Hebei Forestry College, 9(3): 248-250. [in Chinese]) 何晓群, 刘文卿. 2015. 应用回归分析. 北京: 中国人民大学出版社. (He X Q, Liu W Q. 2015. Applied regression analysis. Beijing: China Renmin University Press. [in Chinese]) 王春胜, 赵志刚, 曾 冀, 等. 2013. 广西凭祥西南桦中幼林林木生长过程与造林密度的关系. 林业科学研究, 26(2): 257-262. (Wang C S, Zhao Z G, Zeng J, et al. 2013. Relationship between planting density and tree growth process of Betula alnoides mid-young plantations in Pingxiang, Guangxi. Forest Research, 26(2): 257-262. [in Chinese]) 王晓林, 蔡可旺, 姜立春. 2011. 落叶松树皮厚度变化规律的研究. 森林工程, 27(2): 8-11. (Wang X L, Cai K W, Jiang L C. 2011. Study on bark thickness of Dahurian larch. Forest Engineering, 27(2):8-11. [in Chinese]) 曾 杰, 郭文福, 赵志刚, 等. 2006. 我国西南桦研究的回顾与展望. 林业科学研究, 19(3): 379-384. (Zeng J, Guo W F, Zhao Z G, et al. 2006. Domestication of Betula alnoides in China: current status and perspectives. Forest Research, 19(3): 379-384. [in Chinese]) Brooks J R, Jiang L C. 2009. Comparison of prediction equations for estimating inside bark diameters foryellow-poplar, red maple, and red pine in West Virginia. Northern Journal of Applied Forestry, 26(1):5-8. Cao Q V, Pepper W D. 1986. Predicting inside bark diameter for shortleaf, loblolly, and longleaf pines. Southern Journal of Applied Forestry, 10(4): 220-224. Cellini J M, Galarza M, Burns S L,et al. 2012. Equations of bark thickness and volume profiles at different heights with easy-measurement variables. Forest Systems, 21(1):23-30. Cole D M, Stage A R. 1972. Estimating future diameters of lodgepole pine. Research Paper INT-131, Ogden, UT: Intermountain Forest and Range Experiment Station, Forest Service, U. S. Department of Agriculture, 20. Dolph K L. 1989. Nonlinear equations for predicting diameter inside bark at breast height for young-growth red fir in California and southern Oregon. Research Note PSW-409, Berkeley, CA: Pacific Southwest Forest and Range Experiment Station, Forest Service, U. S. Department of Agriculture, 4. Gordon A D. 1983. Estimating bark thickness of Pinus radiata. New Zealand Journal of Forestry Science, 13(2): 340-345. Jager M M, Richardson S J, Bellingham P J,et al. 2015. Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103(2): 374-385. Johnson T S, Wood G B. 1987. Simple linear model reliably predicts bark thickness of radiata pine in the Australian capital territory. Forest Ecology and Management, 22(3/4): 173-183. Kitikidou K, Papageorgiou A, Milios E,et al. 2014. A bark thickness model for Pinus halepensis in kassandra, Chalkidiki(northern Greece). Silva Balcanica, 15(1): 47-55. Kozak A. 2004. My last words on taper equations. Forestry Chronicle,80(4):507-515. Laasasenaho J, Melkas T, Aldén S. 2005. Modelling bark thickness of Picea abies with taper curves. Forest Ecology and Management, 206(1/3): 35-47. Li R, Weiskittel A R. 2010. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using amixed-effects modeling approach: comparison of model forms and subsampling strategies. European Journal of Forest Research, 130(2): 219-233. Loetsch F, Zöhrer F, Haller K E. 1973. Forest Inventory, Vol. Ⅱ. BLV Verlagsgesellschaft, München, 469. Maguire D A, Hann D W. 1989. Bark thickness and bark volume in southwestern Oregon Douglas-fir. Western Journal of Applied Forestry, 5(1): 5-8. Marshall H D, Murphy H D, Lachenbruch B. 2006. Effects of bark thickness estimates on optimal log merchandising. Forest Products Journal, 56(11/12): 87-92. Myers R H. 1990. Classical and modern regression with applications.2nd ed. Duxbury Press, Belmont. Muhairwe C K. 2000. Bark thickness equations for five commercial tree species in regrowth forests of northern New South Wales. Australian Forestry, 63(1): 34-43. Paine C E T, Stahl C, Courtois E A,et al. 2010. Functional explanations for variation in bark thickness in tropical rain forest trees. Functional Ecology, 24(6): 1202-1210. Poudel K P, Cao Q V. 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. Forest Science, 59(2):243-252. Raj A D A, Malarvili T, Velavan S. 2015. Restorative effect of Betula alnoides bark on hepatic metabolism in high fat diet fed wistar rats. International Journal of Pharmaceutical and BioSciences, 6(3): B1281-B1288. Richardson S J, Laughlin D C, Lawes M J, et al. 2015. Functional and environmental determinants of bark thickness in fire-free temperate rain forest communities. American Journal of Botany, 17(2): 196-199. Sonmez T, Keles S, Tilki F. 2007. Effect of aspect, tree age and tree diameter on bark thickness of Picea orientalis. Scandinavian Journal of Forest Research, 22(3): 193-197. Sur T K, Pandit S, Battacharyya D,et al. 2002. Studies on the antiinflammatory activity of Betula alnoides bark. Phytotherapy Research, 16(7): 669-671. Velavan S. 2014. Antioxidant activity ofBetula alnoides bark extract in high fat diet fed wistar rats. International Journal of ChemTech Research, 7(5): 2391-2398. Williams V L, Witkowski E T F, Balkwill K. 2007. Relationship between bark thickness and diameter at breast height for six tree species used medicinally in South Africa. South African Journal of Botany, 73(3): 449-465. |