Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (11): 92-101.doi: 10.11707/j.1001-7488.LYKX20240772
• Research papers • Previous Articles Next Articles
Jingjing Lei,Yingni Wang,Dan Liao,Yuxin Bao,Kexin Yang,Juan Wang*(
)
Received:2024-12-17
Revised:2025-06-16
Online:2025-11-25
Published:2025-12-11
Contact:
Juan Wang
E-mail:wangjuan@bjfu.edu.cn
CLC Number:
Jingjing Lei,Yingni Wang,Dan Liao,Yuxin Bao,Kexin Yang,Juan Wang. Site Quality Evaluation of Natural Secondary Forest in Northeast China Based on Dummy Variables[J]. Scientia Silvae Sinicae, 2025, 61(11): 92-101.
Table 1
Summary statistics for the dominant tree in the research area"
| 地区 Region | 样地数 Number | 树高Height/m | 胸径DBH/cm | |||||||
| 平均值 Mean | 最小值 Min. | 最大值 Max. | 标准差 SD | 平均值 Mean | 最小值 Min. | 最大值 Max. | 标准差 SD | |||
| DXA | 75 | 17.99 | 9.20 | 34.75 | 5.75 | 17.50 | 8.77 | 54.25 | 6.80 | |
| XXA | 73 | 10.31 | 6.51 | 17.37 | 2.53 | 14.03 | 8.04 | 26.09 | 3.69 | |
| CBS | 114 | 11.79 | 5.42 | 17.38 | 2.59 | 18.79 | 7.51 | 44.80 | 6.28 | |
| ZGC | 132 | 10.64 | 3.28 | 21.09 | 2.61 | 15.65 | 7.16 | 38.38 | 4.84 | |
| LDS | 62 | 10.47 | 5.41 | 16.05 | 2.59 | 16.04 | 7.51 | 33.66 | 5.33 | |
| ALL | 456 | 12.06 | 3.28 | 34.75 | 4.26 | 16.53 | 7.16 | 54.25 | 5.72 | |
Table 3
Classification and description of site quality levels"
| 等级 Level | 描述 Description | 立地形值 Site form (SF) values |
| A | 优 Highest site quality level | ≥ 四分之三分位点 ≥ Third quartile SF |
| B | 良 High-intermediate site quality level | ≥ 中位数且< 四分之三分位点 ≥ Median SF &<third quartile SF |
| C | 中 Low-intermediate site quality level | ≥ 四分之一分位点且<中位数 ≥ First quartile SF &<Median SF |
| D | 差 Lowest site quality level | < 四分之一分位点 < First quartile SF |
Table 4
Parameter estimates and goodness of fit for the site form model in different regions"
| 模型Model | 地区Region | b1 | bi | R2 | RMSE | MAE |
| 哑变量模型Dummy variable model | DXA | 0.368 | 2.695 | 1.878 | ||
| XXA | ? | 0.356 | 2.720 | 1.926 | ||
| ZGC | ? | 0.375 | 2.680 | 1.925 | ||
| CBS | ? | 0.369 | 2.693 | 1.880 | ||
| LDS | ? | 0.379 | 2.672 | 1.857 | ||
| 广义差分模型GADA model | ALL | ? | 0.335 | 3.687 | 2.291 |
Fig.4
Distribution maps of forest site quality in different regions DXA: Daxing’an Mountains; XXA: Xiaoxing’an Mountains; ZGC: Zhangguangcai Mountains; CBS: Changbai Mountains; LDS: Liaodong mountainous region. A.优Highest site quality level;B.良High-intermediate site quality level;C.中Low-intermediate site quality level;D.差Lowest site quality level."
| 曹元帅, 孙玉军. 基于广义代数差分法的杉木人工林地位指数模型. 南京林业大学学报(自然科学版), 2017, 41 (5): 79- 84. | |
| Cao Y S, Sun Y J. Generalized algebraic difference site index model for Chinese fir plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41 (5): 79- 84. | |
|
姜 鹏, 孙 悦, 许佳明, 等. 基于非线性混合效应的华东地区主要优势树种林分水平树高−胸径模型. 自然保护地, 2024, 4 (3): 65- 73.
doi: 10.12335/2096-8981.2024041901 |
|
|
Jiang P, Sun Y, Xu J M, et al. Tree height-diameter models of main tree species in east China based on nonlinear mixed-effects model. Natural Protected Areas, 2024, 4 (3): 65- 73.
doi: 10.12335/2096-8981.2024041901 |
|
| 李忠国, 孙晓梅, 陈东升, 等. 2011. 基于哑变量的日本落叶松生长模型研究. 西北农林科技大学学报(自然科学版), 39(8): 69−74. | |
| Li Z G, Sun X M, Chen D S, et al. 2011. Dummy variables model of increment of Larix kaempferi. Journal of Northwest A&F University (Natural Science Edition), 39(8): 69–74. [in Chinese] | |
|
马 炜, 孙玉军. 长白落叶松人工林立地指数表和胸径地位级表的编制. 东北林业大学学报, 2013, 41 (12): 21- 25, 38.
doi: 10.3969/j.issn.1000-5382.2013.12.006 |
|
|
Ma W, Sun Y J. Compilation of site index table and site class table for Larix olgensis plantations. Journal of Northeast Forestry University, 2013, 41 (12): 21- 25, 38.
doi: 10.3969/j.issn.1000-5382.2013.12.006 |
|
|
牛亦龙, 董利虎, 李凤日. 基于广义代数差分法的长白落叶松人工林地位指数模型. 北京林业大学学报, 2020, 42 (2): 9- 18.
doi: 10.12171/j.1000-1522.20190036 |
|
|
Niu Y L, Dong L H, Li F R. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation. Journal of Beijing Forestry University, 2020, 42 (2): 9- 18.
doi: 10.12171/j.1000-1522.20190036 |
|
| 彭 娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型. 南京林业大学学报(自然科学版), 2018, 42 (3): 19- 27. | |
| Peng W, Li F R, Dong L H. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42 (3): 19- 27. | |
| 沈剑波, 雷相东, 雷渊才, 等. 长白落叶松人工林地位指数及立地形的比较研究. 北京林业大学学报, 2018, 40 (6): 1- 8. | |
| Shen J B, Lei X D, Lei Y C, et al. Comparison between site index and site form for site quality evaluation of Larix olgensis plantation. Journal of Beijing Forestry University, 2018, 40 (6): 1- 8. | |
|
沈剑波, 雷相东, 王虎威, 等. 针阔混交异龄林林分优势高的确定方法. 林业与环境科学, 2019, 35 (1): 43- 48.
doi: 10.3969/j.issn.1006-4427.2019.01.008 |
|
|
Shen J B, Lei X D, Wang H W, et al. Stand dominant height estimation of uneven-aged mixed coniferous and broad-leaved stands. Forestry and Environmental Science, 2019, 35 (1): 43- 48.
doi: 10.3969/j.issn.1006-4427.2019.01.008 |
|
| 宋长江. 2023. 帽儿山实验林场天然次生林立地质量综合评价. 哈尔滨: 东北林业大学. | |
| Song C J. 2023. Comprehansive evaluation of natural secondary forest site quality in Mao’ershan experimental forestry. Harbin: Northeast Forestry University. [in Chinese] | |
| 王君杰, 夏宛琦, 姜立春. 基于分位数回归和哑变量模型的大兴安岭兴安落叶松树高−胸径模型. 中南林业科技大学学报, 2020, 40 (9): 24- 32, 40. | |
| Wang J J, Xia W Q, Jiang L C. Height-diameter models for Larix gmelinii in Daxing’anling based on quantile regression and dummy variable model. Journal of Central South University of Forestry & Technology, 2020, 40 (9): 24- 32, 40. | |
|
吴璧芸, 雷相东, 何 潇, 等. 长白山天然针阔混交林优势高估计方法及立地质量评价. 林业科学, 2024, 61 (2): 85- 92.
doi: 10.11707/j.1001-7488.LYKX20240201 |
|
|
Wu B Y, Lei X D, He X, et al. Stand dominant height estimation methods and site quality assessment for natural mixed conifer-broadleaved forests in Changbai Mountains. Scientia Silvae Sinicae, 2024, 61 (2): 85- 92.
doi: 10.11707/j.1001-7488.LYKX20240201 |
|
|
张 超, 彭道黎, 黄国胜, 等. 基于森林清查数据的三峡库区林地立地质量评价. 东北林业大学学报, 2015, 43 (11): 56- 61.
doi: 10.3969/j.issn.1000-5382.2015.11.012 |
|
|
Zhang C, Peng D L, Huang G S, et al. Site quality evaluation in three gorges reservoir region based on forest inventory data. Journal of Northeast Forestry University, 2015, 43 (11): 56- 61.
doi: 10.3969/j.issn.1000-5382.2015.11.012 |
|
| 朱光玉, 康 立, 何海梅, 等. 基于树高-年龄分级的杉木人工林多形立地指数曲线模型研究. 中南林业科技大学学报, 2017, 37 (7): 18- 29. | |
| Zhu G Y, Kang L, He H M, et al. Study on polymorphic site index curve model based on height-age classification for Cunninghamia lanceolata plantation. Journal of Central South University of Forestry & Technology, 2017, 37 (7): 18- 29. | |
| 曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程. 林业科学研究, 2011, 24 (3): 285- 291. | |
| Zeng W S, Tang S Z, Xia Z S, et al. Using linear mixed model and dummy variable model approaches to construct generalized single-tree biomass equations in Guizhou. Forest Research, 2011, 24 (3): 285- 291. | |
|
Adame P, Cañellas I, Roig S, et al. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Annals of Forest Science, 2006, 63 (8): 929- 940.
doi: 10.1051/forest:2006076 |
|
|
Aguirre A, Moreno-Fernández D, Alberdi I, et al. Mapping forest site quality at national level. Forest Ecology and Management, 2022, 508, 120043.
doi: 10.1016/j.foreco.2022.120043 |
|
| Assmann E, Davis P W. 1970. Principles of forest yield study. Oxford: Pergamon Press. | |
| Batho A, García O. 2006. De perthuis and the origins of site index: a historical note. Forest Biometry, Modelling and Information Sciences (FBMIS), 1: 1–10. | |
|
Benavides R, Roig S, Osoro K. Potential productivity of forested areas based on a biophysical model. a case study of a mountainous region in northern Spain. Annals of Forest Science, 2009, 66 (1): 108.
doi: 10.1051/forest/2008080 |
|
|
Bravo F, Montero G. High-grading effects on Scots pine volume and basal area in pure stands in northern Spain. Annals of Forest Science, 2003, 60 (1): 11- 18.
doi: 10.1051/forest:2002069 |
|
|
Bueis T, Bravo F, Pando V, et al. Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau. IForest - Biogeosciences and Forestry, 2016, 9 (3): 394- 401.
doi: 10.3832/ifor1600-008 |
|
| Burkhart H E, Tomé M. 2012. Modeling forest stand development. Dordrecht: Springer Netherlands, 233–244. | |
| Carmean W H. 1975. Forest site quality evaluation in the United States. Advances in Agronomy, 27: 209–269. | |
|
Cieszewski C J, Bailey R L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 2000, 46 (1): 116- 126.
doi: 10.1093/forestscience/46.1.116 |
|
|
Diéguez-Aranda U, González J G Á, Anta M B, et al. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Annals of Forest Science, 2005, 62 (2): 143- 152.
doi: 10.1051/forest:2005006 |
|
|
González J G Á, González A D R, Soalleiro R R, et al. Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain). Annals of Forest Science, 2005, 62 (2): 115- 127.
doi: 10.1051/forest:2005003 |
|
|
Hanewinkel M, Cullmann D A, Schelhaas M-J, et al. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 2013, 3 (3): 203- 207.
doi: 10.1038/nclimate1687 |
|
|
Kuuluvainen T. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: the complexity challenge. Ambio, 2009, 38 (6): 309- 315.
doi: 10.1579/08-A-490.1 |
|
|
Larson A J, Lutz J A, Gersonde R F, et al. Potential site productivity influences the rate of forest structural development. Ecological Applications, 2008, 18 (4): 899- 910.
doi: 10.1890/07-1191.1 |
|
|
Liang J J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354 (6309): aaf8957.
doi: 10.1126/science.aaf8957 |
|
|
Mohamed A, Reich R M, Khosla R, et al. Influence of climatic conditions, topography and soil attributes on the spatial distribution of site productivity index of the species rich forests of Jalisco, Mexico. Journal of Forestry Research, 2014, 25 (1): 87- 95.
doi: 10.1007/s11676-014-0434-5 |
|
| Monserud R A, Sterba H 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. Forest Ecology and Management, 80(1/2/3): 57–80. | |
|
Moreno-Fernández D, Álvarez-González J G, Rodríguez-Soalleiro R, et al. National-scale assessment of forest site productivity in Spain. Forest Ecology and Management, 2018, 417, 197- 207.
doi: 10.1016/j.foreco.2018.03.016 |
|
| Rose J, Vavra M, Perry D A, et al. Maintaining the long-term productivity of Pacific northwest forest ecosystems. Journal of Range Management, 1991, 44 (5): 525. | |
|
Skovsgaard J P, Vanclay J K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry, 2008, 81 (1): 13- 31.
doi: 10.1093/forestry/cpm041 |
|
|
Stone R. A threatened nature reserve breaks down Asian borders. Science, 2006, 313 (5792): 1379- 1380.
doi: 10.1126/science.313.5792.1379 |
|
|
Swamy S L, Puri S, Singh A K. Growth, biomass, carbon storage and nutrient distribution in Gmelina arborea Roxb. stands on red lateritic soils in central India. Bioresource Technology, 2003, 90 (2): 109- 126.
doi: 10.1016/S0960-8524(03)00120-2 |
|
| Vanclay J K, Henry N B. Assessing site productivity of indigenous cypress pine forest in southern Queensland. Commonwealth Forestry Review, 1988, 67 (1): 53- 64. | |
| Wang Z, Zhang X Q, Chhin S, et al. 2021. Disentangling the effects of stand and climatic variables on forest productivity of Chinese fir plantations in subtropical China using a random forest algorithm. Agricultural and Forest Meteorology, 304/305: 108412. | |
|
Watt M S, Palmer D J, Kimberley M O, et al. Development of models to predict Pinus radiata productivity throughout New Zealand. Canadian Journal of Forest Research, 2010, 40 (3): 488- 499.
doi: 10.1139/X09-207 |
|
| Wei X H, Kimmins J P, Zhou G Y. Disturbances and the sustainability of long-term site productivity in lodgepole pine forests in the central interior of British Columbia: an ecosystem modeling approach. Ecological Modelling, 2003, 164 (2/3): 239- 256. | |
| Weiskittel A R, Hann D W, Kershaw Jr J A, et al. 2011. Forest growth and yield modeling. Chichester: Wiley & Sons. | |
|
Wu R Y, Dong C, Zhang C W, et al. Classification model of site quality for mixed forests based on the TWINSPAN method and site form in southwestern Zhejiang. Forests, 2024, 15 (12): 2247.
doi: 10.3390/f15122247 |
| [1] | Biyun Wu,Xiangdong Lei,Xiao He,Yutang Li. Stand Dominant Height Estimation Methods and Site Quality Assessment for Natural Mixed Conifer-Broadleaved Forests in Changbai Mountains [J]. Scientia Silvae Sinicae, 2025, 61(2): 85-92. |
| [2] | Jiang Lichun, Ma Yingli, Li Yaoxiang. Variable-Exponent Taper Models for Dahurian Larch in Different Regions of Daxing'anling [J]. Scientia Silvae Sinicae, 2016, 52(2): 17-25. |
| [3] | Wu Heng, Dang Kunliang, Tian Xianglin, Sun Shuaichao, Chen Shujun, Zhao Pengxiang, Cao Tianjian. Evaluating Site Quality for Secondary Forests and Plantation in Qinling Mountains [J]. Scientia Silvae Sinicae, 2015, 51(4): 78-88. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||