Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (2): 142-151.doi: 10.11707/j.1001-7488.LYKX20240374
• Research papers • Previous Articles Next Articles
Tianxin Wang,Jinhong Niu,Mingrong Cao,Chenggong Liu,Jinhua Li*()
Received:
2024-06-19
Online:
2025-02-25
Published:
2025-03-03
Contact:
Jinhua Li
E-mail:lijinh@caf.ac.cn
CLC Number:
Tianxin Wang,Jinhong Niu,Mingrong Cao,Chenggong Liu,Jinhua Li. Genetic Variation and Selection of Seedling Traits in the Progeny of Populus simonigra × P. nigra under Low Nitrogen Condition[J]. Scientia Silvae Sinicae, 2025, 61(2): 142-151.
Table 1
Genetic parameters and variance components for growth, leaf morphological and chlorophyll fluorescence traits"
遗传参数/变异来源 Genetic parameter/ Source of variation | 苗高 H2/cm | 地径 BD2/mm | 苗高 净增长量 HS/cm | 地径 净增长量 BDS/mm | 鲜质量 FW/g | 干质量 DW/g | 叶面积 LA/cm2 | 叶长 LL/cm | 叶宽 LW/cm | 叶周长 PER/cm | Fm/Fo | Fv/Fo | Fv/Fm | |
均值Mean | 低氮LN | 57.60 | 5.10 | 14.90 | 1.14 | 3.97 | 1.98 | 16.40 | 4.46 | 5.25 | 17.20 | 5.17 | 4.16 | 0.80 |
常氮NN | 68.00 | 5.80 | 24.20 | 1.95 | 4.24 | 2.17 | 18.00 | 5.21 | 5.72 | 18.70 | 5.19 | 4.18 | 0.81 | |
t检验t test | <0.001*** | <0.001*** | <0.001*** | <0.001*** | 0.008*** | 0.009** | <0.001*** | <0.001*** | 0.700 | <0.001*** | 0.093 | 0.096 | 0.047* | |
表型变异 系数 CV (%) | 低氮LN | 31.50 | 29.90 | 54.40 | 56.40 | 36.40 | 39.00 | 26.50 | 23.20 | 12.10 | 24.30 | 11.90 | 14.80 | 3.30 |
常氮NN | 30.00 | 26.20 | 42.60 | 36.90 | 35.50 | 34.80 | 24.80 | 21.60 | 12.50 | 23.60 | 11.30 | 14.00 | 2.90 | |
广义遗传力h2ɡ | 0.24 | 0.22 | 0.08 | 0.000 | 0.38 | 0.36 | 0.10 | 0.000 | 0.23 | 0.09 | 0.01 | 0.01 | 0.000 | |
均值遗传力h2ɡm | 0.49 | 0.47 | 0.18 | 0.000 | 0.56 | 0.53 | 0.23 | 0.000 | 0.44 | 0.20 | 0.05 | 0.05 | 0.000 | |
选择准确性Ac | 0.70 | 0.69 | 0.42 | 0.75 | 0.73 | 0.48 | 0.66 | 0.45 | 0.24 | 0.22 | 0.000 | |||
基因型-环境相关系数rɡe | 0.52 | 0.46 | 0.66 | 0.42 | — | — | 0.69 | 0.50 | 0.65 | 0.66 | 0.000 | 0.000 | 0.000 | |
遗传变异系数CVɡ (%) | 14.50 | 10.1 | 12.5 | 0.003 | 22.30 | 22.10 | 7.98 | 0.005 | 5.91 | 7.15 | 0.12 | 1.33 | 0.000 | |
固定效应 Fixed effect | ||||||||||||||
处理(环境)ENV | 52*** | 60.2*** | 7.15* | 3.66** | 129*** | 56.8*** | 0.147 | 78.3*** | 0.262 | 0.222 | 0.001 | |||
重复REP | 11 900*** | 39.8*** | 10.3*** | — | — | 4.33 | 0.626 | 0.121 | 6.26 | 0.302 | 0.286 | 0.001 | ||
随机效应 Random effect | ||||||||||||||
基因型GEN | 82.3*** | 0.304*** | 6.0 | 0.000 | 0.838*** | 0.208*** | 1.91 | 0.000 | 0.097*** | 1.63 | 0.003 | 0.003 | 0.000 | |
基因型×环境G×E | 133.0*** | 0.494*** | 47.7*** | 0.261*** | — | — | 11.3*** | 0.576*** | 0.208*** | 11.1*** | 0.000 | 0.000 | 0.000 |
Table 2
Eigenvalues, proportional variance and cumulative variance explained by principal components"
主成分 Principal component | 特征值 Eigenvalue | 特征值方差比率 Eigenvalue (%) | 特征值累计 方差贡献率 Cumulative variance (%) |
PC1 | 4.650 | 31.000 | 31.016 |
PC2 | 3.450 | 23.000 | 54.016 |
PC3 | 3.010 | 20.000 | 74.016 |
PC4 | 1.510 | 10.100 | 84.116 |
PC5 | 0.939 | 6.260 | 90.376 |
PC6 | 0.597 | 3.980 | 94.356 |
PC7 | 0.316 | 2.110 | 96.466 |
PC8 | 0.189 | 1.260 | 97.726 |
PC9 | 0.144 | 0.958 | 98.684 |
PC10 | 0.078 | 0.521 | 99.572 |
PC11 | 0.055 | 0.367 | 99.881 |
PC12 | 0.046 | 0.309 | 99.880 9 |
PC13 | 0.018 | 0.119 | 99.999 948 |
PC14 | 0.000 007 090 | 0.000 047 20 | 99.999 996 |
PC15 | 0.000 000 661 | 0.000 004 41 | 100.000 000 |
Table 3
Factor analysis based on breeding and observation values of traits in the hybrid progeny"
性状 Traits | 第1因子 FA1 | 第2因子 FA2 | 第3因子 FA3 | 第4因子 FA4 | 公因子方差 Communality |
苗高 H2 | –0.95 | 0.07 | 0.05 | –0.05 | 0.90 |
地径 BD2 | –0.92 | –0.03 | 0.12 | –0.02 | 0.86 |
苗高净增长量 HS | –0.88 | 0.07 | –0.04 | –0.07 | 0.78 |
地径净增长量 BDS | –0.75 | 0.03 | 0.13 | –0.07 | 0.58 |
叶面积 LA | –0.01 | –0.97 | –0.04 | 0.07 | 0.94 |
叶长 LL | –0.04 | –0.73 | –0.04 | –0.01 | 0.54 |
叶宽 LW | –0.04 | –0.86 | 0.06 | 0.04 | 0.74 |
叶周长 PER | –0.05 | –0.94 | –0.02 | 0.09 | 0.90 |
鲜质量 FW | –0.82 | –0.18 | 0.00 | 0.06 | 0.71 |
干质量 DW | –0.82 | –0.16 | 0.01 | 0.01 | 0.70 |
氮同位素比值 δ15N | –0.07 | 0.01 | 1.00 | 0.00 | 1.00 |
氮元素含量 N content | 0.07 | –0.09 | –0.55 | 0.82 | 0.99 |
氮同位素比率 15N/14N | –0.07 | 0.01 | 1.00 | 0.00 | 1.00 |
15N原子百分比 AT15N | –0.07 | 0.01 | 1.00 | 0.00 | 1.00 |
15N丰度 15N abundance | 0.05 | –0.09 | 0.22 | 0.97 | 0.99 |
Table 4
Selection difference and genetic gain of the genotype traits in the selected progeny with MGIDI"
性状 Trait | 因子 Factor | 总体均值 Xo | 中选基因 型均值 Xs | 选择差 SD | 遗传增益 GG(%) |
苗高 H2 | FA1 | 63.40 | 67.30 | 3.94 | 6.23 |
苗高净增长量 HS | FA1 | 19.60 | 20.10 | 0.55 | 2.78 |
地径 BD2 | FA1 | 5.50 | 5.76 | 0.26 | 4.76 |
地径净增长量 BDS | FA1 | 1.54 | 1.63 | 0.09 | 5.84 |
鲜质量 FW | FA1 | 4.16 | 4.71 | 0.55 | 13.30 |
干质量 DW | FA1 | 2.10 | 2.36 | 0.27 | 12.70 |
叶面积 LA | FA2 | 17.30 | 17.70 | 0.39 | 2.24 |
叶长 LL | FA2 | 4.99 | 5.09 | 0.10 | 2.00 |
叶宽 LW | FA2 | 5.27 | 5.40 | 0.13 | 2.53 |
叶周长 PER | FA2 | 17.90 | 18.30 | 0.36 | 1.99 |
氮同位素比值 δ15N | FA3 | 2.57 | 2.91 | 0.34 | 13.40 |
氮同位素比率 15N/14N | FA3 | 1.31 | 1.44 | 0.13 | 9.63 |
15N原子百分比 AT15N | FA3 | 1.29 | 1.42 | 0.12 | 9.49 |
氮元素含量 N content | FA4 | 1.69 | 1.80 | 0.11 | 6.63 |
15N丰度 15N abundance | FA4 | 0.21 | 0.25 | 0.04 | 16.50 |
方升佐. 中国杨树人工林培育技术研究进展. 应用生态学报, 2008, 19 (10): 2308- 2316. | |
Fang S Z. Silviculture of poplar plantation in China. Chinese Journal of Applied Ecology, 2008, 19 (10): 2308- 2316. | |
国家林业和草原局. 2019. 中国森林资源报告(2014—2018). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. China forest resources report 2014–2018. Beijing: China Forestry Publishing House. [in Chinese] | |
康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版), 2020, 44 (3): 1- 10. | |
Kang X Y. Research progress of forest genetics and tree breeding. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44 (3): 1- 10. | |
李金花. 基于BLUP和GGE双标图的黑杨派无性系生长性状基因型与环境互作效应. 林业科学, 2021, 57 (6): 64- 73. | |
Li J H. Genotype by environment interaction for growth traits of clones of Populus section Aigeiros based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2021, 57 (6): 64- 73. | |
连 盈, 卢 娟, 胡成梅, 等. 低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选. 中国生态农业学报, 2020, 28 (4): 523- 534. | |
Lian Y, Lu J, Hu C M, et al. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties. Chinese Journal of Eco-Agriculture, 2020, 28 (4): 523- 534. | |
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151. | |
Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151. | |
刘 宁, 丁昌俊, 李 波, 等. 12个欧美杨无性系生长初期基因型与环境的互作效应. 林业科学, 2020, 56 (8): 63- 72. | |
Liu N, Ding C J, Li B, et al. Effects of genotype by environment interaction of 12 Populus × euramericana clones in their early growth. Scientia Silvae Sinicae, 2020, 56 (8): 63- 72. | |
苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策. 林业科学研究, 2010, 23 (1): 31- 37. | |
Su X H, Ding C J, Ma C G. Research progress and strategies of poplar breeding in China. Forest Research, 2010, 23 (1): 31- 37. | |
孙国语, 马晓雨, 易嘉欣, 等. 养分供给对黑青杨等杨树生长动态及养分分配的影响. 植物研究, 2021, 41 (5): 690- 699. | |
Sun G Y, Ma X Y, Yi J X, et al. Effects of nutrient supply on growth dynamics and nutrient allocation of poplars. Bulletin of Botanical Research, 2021, 41 (5): 690- 699. | |
王响玲, 宋柏权. 2020. 氮肥利用率的研究进展. 中国农学通报, 36(5): 93–97. | |
Wang X L, Song B Q. 2020. Nitrogen fertilizer use efficiency: research progress. Chinese Agricultural Science Bulletin. 36(5): 93–97. [in Chinese] | |
徐纬英. 1988. 杨树. 哈尔滨: 黑龙江人民出版社. | |
Xu W Y. 1988. Poplar. Harbin: Heilongjiang People’s Publishing House. [in Chinese] | |
严艳兵, 潘惠新. 美洲黑杨杂交子代苗期性状遗传变异及选择. 浙江农林大学学报, 2021, 38 (6): 1144- 1152. | |
Yan Y B, Pan H X. Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides. Journal of Zhejiang A & F University, 2021, 38 (6): 1144- 1152. | |
张 婧, 张伟溪, 丁昌俊, 等. 五个杨树品种生长、光合生理及根尖离子流速特性比较分析. 植物研究, 2024, 44 (1): 96- 106. | |
Zhang J, Zhang W X, Ding C J, et al. Comparative analysis of growth, photosynthetic physiology and root tip ion flow characteristics of five poplar varieties. Bulletin of Botanical Research, 2024, 44 (1): 96- 106. | |
Adewumi A S, Asare P A, Adejumobi I I, et al. Multi-trait selection index for superior agronomic and tuber quality traits in bush yam (Dioscorea praehensilis Benth.). Agronomy, 2023, 13 (3): 682.
doi: 10.3390/agronomy13030682 |
|
Alexandru A M, Mihai G, Stoica E, et al. Multi-trait selection and stability in Norway spruce (Picea abies) provenance trials in Romania. Forests, 2023, 14 (3): 456- 470.
doi: 10.3390/f14030456 |
|
Bisoffi S, Gullberg U. 1996. Poplar breeding and selection strategies//Stettler R F, Branshaw H D, Heilman P E, et al. eds. Biology of Populus and its implications for management and conservation. Part I, Chapter 6. Ottawa: Research Press of National Research Council of Canada, 139–158. | |
Caique M S, Henrique C M, João P O R, et al. Multi-trait selection of wheat lines under drought-stress condition. Plant Breeding, 2023, 82 (41): 1678- 1692. | |
Chen C, Chu Y G, Huang Q J, et al. Morphological, physiological, and transcriptional responses to low nitrogen stress in Populus deltoides Marsh. clones with contrasting nitrogen use efficiency. BMC Genomics, 2021, 22 (1): 697.
doi: 10.1186/s12864-021-07991-7 |
|
Chen C, Chu Y G, Huang Q J, et al. Morphological and physiological plasticity response to low nitrogen stress in black cottonwood (Populus deltoides Marsh.). Journal of Forestry Research, 2022, 33 (1): 697. | |
Hu Y B, Li C M, Jiang L P, et al. Growth performance and nitrogen allocation within leaves of two poplar clones after exponential and conventional nitrogen applications. Plant Physiology and Biochemistry, 2020, 154, 530- 537.
doi: 10.1016/j.plaphy.2020.06.053 |
|
Kalcsits L A, Guy R D. Genotypic variation in nitrogen isotope discrimination in Populus balsamifera L. clones grown with either nitrate or ammonium. Journal of Plant Physiology, 2016a, 201, 54- 61.
doi: 10.1016/j.jplph.2016.06.016 |
|
Kalcsits L A, Guy R D. 2016b. Variation in fluxes estimated from nitrogen isotope discrimination corresponds with independent measures of nitrogen flux in Populus balsamifera L. Plant, Cell & Environment, 39(2): 310–319. | |
Lee S H, Clark S, van der Werf J H J. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLoS ONE, 2017, 12 (12): e0189775.
doi: 10.1371/journal.pone.0189775 |
|
Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494 (7438): 459- 462.
doi: 10.1038/nature11917 |
|
Luo J, Zhou J, Li H, et al. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiology, 2015, 35 (12): 1283- 1302.
doi: 10.1093/treephys/tpv091 |
|
Luo J, Zhou J J. Growth performance, photosynthesis, and root characteristics are associated with nitrogen use efficiency in six poplar species. Environmental and Experimental Botany, 2019, 164, 40- 51.
doi: 10.1016/j.envexpbot.2019.04.013 |
|
McKown A D, Guy R D, Klápště J, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist, 2014, 201 (4): 1263- 1276.
doi: 10.1111/nph.12601 |
|
Monclus R, Dreyer E, Villar M, et al. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytologist, 2006, 169 (4): 765- 777.
doi: 10.1111/j.1469-8137.2005.01630.x |
|
Novaes E, Osorio L, Drost D R, et al. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytologist, 2009, 182 (4): 878- 890.
doi: 10.1111/j.1469-8137.2009.02785.x |
|
Olivoto T, Diel MI, Schmidt D, et al. 2021a. Multivariate analysis of strawberry experiments: where are we now and where can we go? BioRxiv https://doi.org/10.1101/2020.12.30.424876. | |
Olivoto T, Diel M I, Schmidt D, et al. MGIDI: a powerful tool to analyze plant multivariate data. Plant Methods, 2022, 18 (1): 121. | |
Olivoto T, Lucio A D. metan: an R package for multi-environment trial analysis. Methods in Ecology and Evolution, 2020, 11 (6): 783- 789.
doi: 10.1111/2041-210X.13384 |
|
Olivoto T, Nardino M. MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics, 2021b, 37 (10): 1383- 1389.
doi: 10.1093/bioinformatics/btaa981 |
|
Ouattara F, Agre P A, Adejumobi I I, et al. Multi-trait selection index for simultaneous selection of water yam (Dioscorea alata L.) genotypes. Agronomy, 2024, 14 (1): 128.
doi: 10.3390/agronomy14010128 |
|
Rocha J R A S C, Machado J C, Carneiro P C S. Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 2018, 10 (1): 52- 60.
doi: 10.1111/gcbb.12443 |
|
Silva C M, Mezzomo H C, Ribeiro J P O, et al. Multi-trait selection of wheat lines under drought-stress condition. Bragantia, 2023, 82, e20220254.
doi: 10.1590/1678-4499.20220254 |
|
Singamsetti A, Zaidi P H, Seetharam K, et al. Genetic gains in tropical maize hybrids across moisture regimes with multi-trait-based index selection. Frontiers in Plant Science, 2023, 14, 1147424.
doi: 10.3389/fpls.2023.1147424 |
|
Song J Y, Wang Y, Pan Y H, et al. The influence of nitrogen availability on anatomical and physiological responses of Populus alba × P. glandulosa to drought stress. BMC Plant Biology, 2019, 19 (1): 63.
doi: 10.1186/s12870-019-1667-4 |
|
Uddin M S, Billah M, Afroz R, et al. Evaluation of 130 eggplant (Solanum melongena L.) genotypes for future breeding program based on qualitative and quantitative traits, and various genetic parameters. Horticulturae, 2021, 7 (10): 376.
doi: 10.3390/horticulturae7100376 |
|
Vaezi B, Pour-Aboughadareh A, Mohammadi R, et al. Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes. Euphytica, 2019, 215 (4): 63.
doi: 10.1007/s10681-019-2386-5 |
|
White T L, Adans W T, Neale D B. 2007. Forest genetics. Cambridge: CABI Publishing. | |
Winfield M, Hughes F M R. Variation in Populus nigra clones: implications for river restoration projects in the United Kingdom. Wetlands, 2002, 22 (1): 33- 48.
doi: 10.1672/0277-5212(2002)022[0033:VIPNCI]2.0.CO;2 |
|
Zhang J Y, Liu P, Yang D W, et al. Planting six tree species on soda-saline-alkali soil. Journal of Forestry Research, 1998, 9 (4): 253- 255.
doi: 10.1007/BF02912329 |
|
Zhao X W, Nie G, Yao Y Y, et al. Natural variation and genomic prediction of growth, physiological traits, and nitrogen-use efficiency in perennial ryegrass under low-nitrogen stress. Journal of Experimental Botany, 2020, 71 (20): 6670- 6683.
doi: 10.1093/jxb/eraa388 |
[1] | Maojin Li. Prediction of Breeding Values and Preliminary Selection of Superior Individuals for Rapid Growth and Wind Resistance Traits in Casuarina equisetifolia [J]. Scientia Silvae Sinicae, 2024, 60(12): 92-100. |
[2] | Chubiao Wang,Jianzhong Luo,Wenliang He,Wanhong Lu,Yan Lin,Yuduan Ou. G×E Analysis and Selection of Eucalyptus Clones by Multi-Region Combined Test [J]. Scientia Silvae Sinicae, 2022, 58(11): 108-117. |
[3] | Jinhua Li. Genotype by Environment Interaction for Growth Traits of Clones of Populus Section Aigeiros Based on BLUP and GGE Biplot [J]. Scientia Silvae Sinicae, 2021, 57(6): 64-73. |
[4] | Zheng Conghui, Zhang Hongjing, Wang Yuzhong, Dai Jianfeng, Dang Lei, Du Zichun, Liu Jianting, Gao Yunru. An Analysis of a Regional Trial of Larix principis-rupprechtii Families Based on BLUP and GGE Biplot [J]. Scientia Silvae Sinicae, 2019, 55(8): 73-83. |
[5] | Jin Guoqing, Zhang Zhen, Yu Qixin, Feng Suiqi, Feng Zhongping, Zhao Shirong, Zhou Zhichun. Comparisons of Genetic Variation and Gains of 6-year-old Families from First-and Second-Generation Seed Orchards of Pinus massoniana [J]. Scientia Silvae Sinicae, 2019, 55(7): 57-67. |
[6] | Zu Xiaofeng, Ni Chengcai, Gorden Nigh, Qin Xianlin. Based on Mixed-Effects Model and Empirical Best Linear Unbiased Predictor to Predict Growth Profile of Dominant Height [J]. Scientia Silvae Sinicae, 2015, 51(3): 25-33. |
[7] | Yang Huixiao, Liu Tianyi, Liu Chunxin, Wang Jinbang, Huang Shaowei. Spatial Analysis of Loblolly Pine Trees as Gene Resources [J]. Scientia Silvae Sinicae, 2015, 51(11): 50-59. |
[8] | Liu Tianyi, Yang Huixiao, Liu Chunxin, Wang Jinbang, Huang Shaowei. Prediction of Breeding Values and Selection to the Gene Resources of Loblolly Pine [J]. Scientia Silvae Sinicae, 2014, 50(8): 60-67. |
[9] | Zhang Qian;Zeng Linghai;He Boxiang;Lian Huiming;Cai Yanling. Age Changes and Genetic Analysis of the Resin-Yielding Capacity of Open-Pollinated Families of Masson Pine [J]. , 2013, 49(1): 48-52. |
[10] | Ma Hao;Deng Huaping;Zhang Dongmei;Li Rongxing;Chen Xinfang. STUDY ON PREDICTING METHOD OF BREEDING VALUES IN PAULOWNIA [J]. Scientia Silvae Sinicae, 2003, 39(1): 75-80. |
[11] | Goufang Shen,Liming Jia,Mingpu Zhai. THE SOIL AMELIORATION EFFECT OF POPLAR-BLACK LOCUST MIXED PLANTATION ON SAND SOIL AND THE INTERACTION OF MUTUAL SUPPLEMENT OF NUTRIENT BETWEEN TREE SPECIES [J]. Scientia Silvae Sinicae, 1998, 34(5): 12-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||