Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (5): 1-10.doi: 10.11707/j.1001-7488.LYKX20210754
Previous Articles Next Articles
Jiaming Wan1(),Jiang Lü3,Yun Shi3,Hang Xu1,2,*(
),Zhiqiang Zhang1,2
Received:
2021-10-05
Online:
2023-05-25
Published:
2023-08-02
Contact:
Hang Xu
E-mail:hangxu@bjfu.edu.cn
CLC Number:
Jiaming Wan,Jiang Lü,Yun Shi,Hang Xu,Zhiqiang Zhang. Effects of Diffuse Radiation on the Gross Primary Productivity of a Poplar Plantation[J]. Scientia Silvae Sinicae, 2023, 59(5): 1-10.
Table 1
Partial regression coefficients and P values between gross primary productivity and αdir、αdif、A2000,dir and A2000,dif during the growing seasons of 2015—2018"
αdir | αdif | A2000,dir | A2000,dif | |
偏相关系数 Partial regression coefficient | 0.18 | 0.33 | –0.35 | 0.57** |
显著系数 P-value | 0.384 | 0.105 | 0.091 | 0.003 |
陈世苹, 游翠海, 胡中民, 等. 涡度相关技术及其在陆地生态系统通量研究中的应用. 植物生态学报, 2020, 44 (4): 291- 304.
doi: 10.17521/cjpe.2019.0351 |
|
Chen S P, You C H, Hu Z M, et al. Eddy covariance technology and its application in terrestrial ecosystem flux research. Chinese Journal of Plant Ecology, 2020, 44 (4): 291- 304.
doi: 10.17521/cjpe.2019.0351 |
|
张 弥, 于贵瑞, 张雷明, 等. 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响. 植物生态学报, 2009, 33 (2): 270- 282.
doi: 10.3773/j.issn.1005-264x.2009.02.004 |
|
Zhang M, Yu G R, Zhang L M, et al. Effects of solar radiation on net ecosystem carbon exchange in broadleaf red pine forests of Changbai Mountain. Journal of Plant Ecology, 2009, 33 (2): 270- 282.
doi: 10.3773/j.issn.1005-264x.2009.02.004 |
|
Alton P B. Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agricultural and Forest Meteorology, 2008, 148 (10): 1641- 1653.
doi: 10.1016/j.agrformet.2008.05.014 |
|
Alton P B, North P, Kaduk J, et al. Radiative transfer modeling of direct and diffuse sunlight in a Siberian pine forest. Journal of Geophysical Research Atmospheres, 2005, 110 (23): 1- 13. | |
Berry J, Bjorkman O. Photosynthetic Response and adaptation to temperature in Higher Plants. Annual Review of Plant Physiology, 1980, 31, 491- 543.
doi: 10.1146/annurev.pp.31.060180.002423 |
|
Baldocchi D D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 2020, 26 (1): 242- 260.
doi: 10.1111/gcb.14807 |
|
Chen J M , Liu J , Cihlar J , et al. 1999. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124(2/3): 99–119. | |
Chen J M, Ju W, Ciais P, et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 2019, 10 (1): 4- 10.
doi: 10.1038/s41467-018-07885-5 |
|
Ehleringer J, Pearcy R W. Variation in quantum yield for CO2 uptake among C3 and C4 plants . Plant Physiology, 1983, 73 (3): 555- 559.
doi: 10.1104/pp.73.3.555 |
|
Emmel C, D’Odorico P, Revill A, et al. 2020. Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Global Change Biology, 26(9): 5164-5177. | |
Ezhova E, Ylivinkka I, Kuusk J, et al. Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests. Atmospheric Chemistry and Physics, 2018, 18, 17863- 17881.
doi: 10.5194/acp-18-17863-2018 |
|
Foken T. 2005. Angewandte meteorologie: Mikrometeorologische Methoden. America: Springer, 1-325. | |
Foken T, Aubinet M, Leuning R. 2012. The eddy covariance method. Eddy Covariance. America: Springer: 1–19. | |
Fu Y, Zheng Z, Yu G, et al. Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 2009, 6 (12): 2879- 2893.
doi: 10.5194/bg-6-2879-2009 |
|
Gao X, Gu F, Mei X, et al. Carbon exchange of a rainfed spring maize cropland under plastic film mulching with straw returning on the Loess Plateau, China. Catena, 2017, 158 (7): 298- 308. | |
Gu L, Baldocchi D, Verma S B, et al. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research Atmospheres, 2002, 107 (5/6): 2- 1-2-23. | |
Gu L, Fuentes J D, Shugart H H, et al. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests. Journal of Geophysical Research Atmospheres, 1999, 104 (D24): 31421- 31434.
doi: 10.1029/1999JD901068 |
|
Gui X, Wang L, Su X, et al. Environmental factors modulate the diffuse fertilization effect on gross primary productivity across Chinese ecosystems. Science of the Total Environment, 2021, 793, 148443.
doi: 10.1016/j.scitotenv.2021.148443 |
|
Han J, Zhang L, Li S, et al. Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales. Science of the Total Environment, 2019, 651, 3002- 3014.
doi: 10.1016/j.scitotenv.2018.10.190 |
|
He M, Ju W, Zhou Y, et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agricultural and Forest Meteorology, 2013, 173, 28- 39.
doi: 10.1016/j.agrformet.2013.01.003 |
|
He Y, Wang K, Zhou C, et al. 2018. A revisit of global dimming and brightening based on the sunshine duration. Geophysical Research Letters, 45: 4281–4289. | |
Kanniah K D, Beringer J, North P, et al. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review. Progress in Physical Geography, 2012, 36 (2): 209- 237.
doi: 10.1177/0309133311434244 |
|
Kormann, R., and Meixner F. An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorology, 2001, 99, 207- 224.
doi: 10.1023/A:1018991015119 |
|
Krishnan P, Meyers T P, Scott R L, et al. Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agricultural and Forest Meteorology, 2012, 153, 31- 44.
doi: 10.1016/j.agrformet.2011.09.017 |
|
Lee S C, Knox S H, McKendry I, et al. Biogeochemical and biophysical responses to episodes of wildfire smoke from natural ecosystems in southwestern British Columbia, Canada. Atmospheric Chemistry and Physics, 2022, 22, 2333- 2349.
doi: 10.5194/acp-22-2333-2022 |
|
Li X, Liang H, Cheng W. Spatio-temporal variation in AOD and correlation analysis with PAR and NPP in China from 2001 to 2017. Remote Sensing, 2020, 12, 976.
doi: 10.3390/rs12060976 |
|
Lu X, Chen M, Liu Y, et al. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings. Agricultural and Forest Meteorology, 2017, 237 (5): 39- 49. | |
Matsui T, Beltrán-Przekurat A, Niyogi D, et al. Aerosol light scattering effect on terrestrial plant productivity and energy fluxes over the eastern United States. Journal of Geophysical Research Atmospheres, 2008, 113, 1- 17. | |
McKendry I G, Christen A, Lee S C, et al. Impacts of an intense wildfire smoke episode on surface radiation, energy and carbon fluxes in southwestern British Columbia, Canada. Atmospheric Chemistry and Physics, 2019, 19 (2): 835- 846.
doi: 10.5194/acp-19-835-2019 |
|
Mercado L M, Bellouin N, Sitch S, et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature, 2009, 458 (7241): 1014- 1017.
doi: 10.1038/nature07949 |
|
Papale, D. Ideas and perspectives: enhancing the impact of the FLUXNET network of eddy covariance sites. Biogeosciences, 2020, June, 1- 13. | |
Reichstein M, Falge E, Baldocchi D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11 (9): 1424- 1439.
doi: 10.1111/j.1365-2486.2005.001002.x |
|
Reindl D T, Beckman W A, Duffie J A. Diffuse fraction correlations. Solar Energy, 1990, 45 (1): 1- 7.
doi: 10.1016/0038-092X(90)90060-P |
|
Ruimy A, Jarvis P G, Baldocchi D D, et al. CO2 Fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research, 1995, 26 (C): 1- 68. | |
Ryu Y, Berry J A, Baldocchi D D. 2019. What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment, 223(November 2018): 95–114. | |
Tollenaar M, Fridgen J, Tyagi P, et al. The contribution of solar brightening to the US maize yield trend. Nature Climate Change, 2017, 7, 275- 278.
doi: 10.1038/nclimate3234 |
|
Urban O, Janouš D, Acosta M, et al. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 2007, 13 (1): 157- 168. | |
Wang Y, Wild M. A new look at solar dimming and brightening in China. Geophysical Research Letters, 2016, 43 (22): 11,777- 11,785. | |
Webb E K. On the correction of flux measurements for effects of heat and water vapour transfer. Boundary-Layer Meteorology, 1982, 23 (2): 251- 254.
doi: 10.1007/BF00123301 |
|
Wilson K B, Baldocchi D D, Hanson P J. 2001. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant, Cell and Environment, 24(6): 571–583. | |
Wohlfahrt G, Hammerle A, Haslwanter A, et al. Disentangling leaf area and environmental effects on the response of the net ecosystem CO2 exchange to diffuse radiation . Geophysical Research Letters, 2008, 35 (16): 1- 5. | |
Xie X, Wang T, Yue X, et al. Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China . Atmospheric Research, 2020, 237, 104859.
doi: 10.1016/j.atmosres.2020.104859 |
|
Xu H, Xiao J, Zhang Z, et al. 2020a. Canopy photosynthetic capacity drives contrasting age dynamics of resource use efficiencies between mature temperate evergreen and deciduous forests. Global Change Biology , 287: 107953. | |
Xu H, Zhang Z, Chen J, et al. Cloudiness regulates gross primary productivity of a poplar plantation under different environmental conditions. Canadian Journal of Forest Research, 2017, 47, 648- 658.
doi: 10.1139/cjfr-2016-0413 |
|
Xu H, Zhang Z, Chen J, et al. Regulations of cloudiness on energy partitioning and water use strategy in a riparian poplar plantation. Agricultural and Forest Meteorology, 2018, 262 (7): 135- 146. | |
Xu H, Zhang Z, Xiao J, et al. 2020b. Environmental and canopy stomatal control on ecosystem water use efficiency in a riparian poplar plantation. Agricultural and Forest Meteorology, 287: 107953. | |
Xue W, Zhang J, Ji D, et al. Aerosol-induced direct radiative forcing effects on terrestrial ecosystem carbon fluxes over China. Environmental Research, 2021, 200 (February): 111464. | |
Yan H, Fu Y, Xiao X, et al. 2009. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture. Ecosystems and Environment, 129(2009): 391–400. | |
Zhang J, Ding J, Zhang J, et al. 2020a. Effects of increasing aerosol optical depth on the gross primary productivity in China during 2000–2014. Ecological Indicators, 108: 105761. | |
Zhang L M, Yu G R, Sun X M, et al. Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China . Agricultural and Forest Meteorology, 2006, 137 (3-4): 176- 187.
doi: 10.1016/j.agrformet.2006.02.006 |
|
Zhang Y, Bastos A, Maignan F, et al. Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model. Geoscientific Model Development, 2020b, 13 (11): 5401- 5423.
doi: 10.5194/gmd-13-5401-2020 |
|
Zhong Q, Wang K, Lai Q, et al. Carbon dioxide fluxes and their environmental control in a reclaimed coastal wetland in the Yangtze Estuary. Estuaries and Coasts, 2016, 39 (2): 344- 362.
doi: 10.1007/s12237-015-9997-4 |
|
Zhou H, Yue X, Lei Y, et al. 2021a. Aerosol radiative and climatic effects on ecosystem productivity and evapotranspiration. Current Opinion in Environmental Science and Health 19. | |
Zhou H, Yue X, Lei Y, et al. Large Contributions of diffuse radiation to global gross primary productivity during 1981–2015. Global Biogeochemical Cycles, 2021b, 35, 1- 15. | |
Zhou L, Zhou G, Jia Q. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China . Aquatic Botany, 2009, 91 (2): 91- 98.
doi: 10.1016/j.aquabot.2009.03.002 |
|
Zhou Y, Wu X, Ju W, et al. Modeling the effects of global and diffuse radiation on terrestrial gross primary productivity in China based on a two-leaf light use efficiency model. Remote Sensing, 2020, 12 (20): 1- 21. |
[1] | Rundong Li,Wendong Tian,Haiqun Yu,Xinhao Li,Chuan Jin,Peng Liu,Tianshan Zha,Yun Tian. Forest Phenology Estimation and Its Relationships with Corresponding Meteorological Factors Based on Digital Images in Songshan, Beijing, China [J]. Scientia Silvae Sinicae, 2022, 58(1): 89-97. |
[2] | Wang Wenbo, Wang Yanping, Wang Huatian, Ma Xuesong, Yi Wenhui. Effects of Different Continuous Cropping and Rotation of Poplar Plantation on Soil Nitrogen Bacteria Community and Nitrogen Metabolism [J]. Scientia Silvae Sinicae, 2016, 52(5): 45-54. |
[3] | Xu Tan, Wang Huatian, Zhu Wanrui, Wang Yanping, Li Chuanrong, Jiang Yuezhong. Morphological and Anatomical Traits of Poplar Fine Roots in Successive Rotation Plantations [J]. Scientia Silvae Sinicae, 2015, 51(1): 119-126. |
[4] | Fu Jianping, Lan Zaiping, Sun Shangwei, Liu Junqin, Zhang Yong. Soil Water Movement in a Poplar Plantation under Drip Irrigation [J]. Scientia Silvae Sinicae, 2013, 49(6): 25-29. |
[5] | Wang Jing;Liang Jun;Jiao Yijie;Zhang Xingyao. Relationships between Neighborhood Comparison of Short-Rotation Poplar Plantations and Canker Disease Incidence [J]. Scientia Silvae Sinicae, 2012, 48(11): 57-62. |
[6] | Duan Aiguo;Zhang Jianguo;He Caiyun;Zeng Yanfei. Characteristic Parameters of Light Response of Photosynthesis of Main Tree Speciesfor Vegetation Restoration in Dry Season in Dry-Hot River Valley [J]. Scientia Silvae Sinicae, 2010, 46(3): 68-73. |
[7] | Tian Liu;Ren Guifang;Li Yong;Guo Minwei;Piao Chungen. Investigation on Microflora of Poplar Plantations in Beijing [J]. Scientia Silvae Sinicae, 2010, 46(3): 80-88. |
[8] | Zhong Quanlin;Hu Songzhu;He Lizhong;Tang Chengcai. Analysis of Primary Light Response Parameters of Machilus pauhoi from Different Provenances [J]. Scientia Silvae Sinicae, 2008, 44(7): 118-123. |
[9] | Liu Fude;Jiang Yuezhong;Wang Huatian;Wang Ying;Kong Linggang. Soil Productivity Maintenance Technique of Poplar Plantation under Continuous Cropping [J]. , 2007, 43(zk): 58-64. |
[10] | Zhu Chunquan;Lei Jingpin;Liu Xiaodong;Wang Fuguo;Cheng Guizhen. THE DISTRIBUTION AND SEASONAL CHANGE OF LEAF AREA IN POPLAR PLANTATIONS MANAGED IN DIFFERENT WAYS [J]. Scientia Silvae Sinicae, 2001, 37(1): 46-51. |
[11] | Zhu Chunquan;Lei Jingpin;Liu Xiaodong;Cheng Guizheng;Li Baodong. CROWN STRUCTURE OF POPLAR TREES IN INTENSIVE AND EXTENSIVE MANAGEMENT PLANTATIONS [J]. Scientia Silvae Sinicae, 2000, 36(2): 60-68. |
[12] | Fucheng Bao,Shengqua Lui,Zehui Jiang. MODELING WOOD PROPERTIES IN RELATION TO CAMBIUM AGE AND GROWTH RATE IN POPLAR PLANTATION [J]. Scientia Silvae Sinicae, 1999, 35(1): 77-82. |
[13] | Shiji Wang,Yarong Liu,Gangying Hui,Guoyou Leng,Shuli Zhou. A STUDY ON THE SOIL MANAGEMENT MODEL FOR POPLAR PLANTATION IN HUAIBEI COAL MINE COLLAPSED AREA [J]. Scientia Silvae Sinicae, 1996, 32(5): 411-418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||