Scientia Silvae Sinicae ›› 2021, Vol. 57 ›› Issue (6): 64-73.doi: 10.11707/j.1001-7488.20210607
Previous Articles Next Articles
Jinhua Li
Received:
2021-01-04
Online:
2021-06-25
Published:
2021-08-06
CLC Number:
Jinhua Li. Genotype by Environment Interaction for Growth Traits of Clones of Populus Section Aigeiros Based on BLUP and GGE Biplot[J]. Scientia Silvae Sinicae, 2021, 57(6): 64-73.
Table 1
Environmental conditions of 9 trial sites"
环境因子 Environmental factor | 试验点(编号) Site (No.) | ||||||||
北京昌平 Changping, Beijing (E1) | 北京大兴 Daxing, Beijing (E2) | 河北永清 Yongqing, Hebei (E3) | 河北任丘 Renqiu, Hebei (E4) | 河北丰南 Fengnan, Hebei (E5) | 山东宁阳1 Ningyang 1, Shandong (E6) | 山东宁阳2 Ningyang 2, Shandong (E7) | 山东金乡 Jinxiang, Shandong (E8) | 河北魏县 Weixian, Hebei (E9) | |
地理位置Location | 40°13′37″N 116°21′44″E | 39°31′17″N 116°16′55″E | 39°27′48″N 116°33′26″E | 38°42′30″N 116°10′31″E | 39°28′5″N 118°16′32″E | 35°55′21″N 116°53′42″E | 35°55′21″N 116°53′42″E | 35°2′24″N 116°8′44″E | 36°16′26″N 114°48′1″E |
土壤Soil | 壤质Loam | 沙质Sandy | 壤质Loam | 壤质Loam | 沙质Sandy | 沙质Sandy | 壤质Loam | 壤质Loam | 壤质Loam |
年平均气温 Annual average temperature/℃ | 12.6 | 12.5 | 12.0 | 13.1 | 11.6 | 13.7 | 13.7 | 14.4 | 13.5 |
气温年较差 Annual temperature difference /℃ | 29.8 | 30.1 | 31.2 | 30.7 | 30.8 | 28.0 | 28.0 | 27.2 | 28.6 |
年平均最高气温 Annual average maximum temperature /℃ | 18.2 | 18.2 | 18.5 | 18.8 | 17.7 | 19.8 | 19.8 | 19.7 | 19.6 |
年平均最低气温 Annual average minimum temperature /℃ | 7.2 | 7.3 | 6.5 | 8.0 | 6.5 | 8.7 | 8.7 | 9.8 | 8.5 |
年极端最低气温 Annual extreme minimum temperature/℃ | -19.0 | -19.6 | -24.4 | -19.6 | -25.6 | -17.0 | -17.0 | -15.2 | -18.2 |
年日最低气温≤2.0 ℃平均日数 Annual average number of days with daily minimum temperature≤2.0 ℃/d | 135.7 | 136.0 | 143.6 | 131.0 | 141.3 | 118.0 | 118.0 | 105.3 | 120.7 |
年最多降水量 Annual maximum precipitation /mm | 901.4 | 713.0 | 932.5 | 861.5 | 811.2 | 1 106.1 | 1 106.1 | 1 154.9 | 795.6 |
年最少降水量 Annual minimum precipitation/mm | 282.0 | 293.0 | 278.7 | 304.9 | 262.0 | 303.6 | 303.6 | 328.7 | 255.2 |
年日降水量≥1.0 mm平均日数 Annual average number of days with daily precipitation≥1.0 mm /d | 46.4 | 44.8 | 41.9 | 41.5 | 44.0 | 50.0 | 50.0 | 51.4 | 43.2 |
累年月最长连续降水量 Annual longest continuous precipitation in months /mm | 250 | 289 | 419 | 170 | 82 | 156 | 156 | 214 | 138 |
年降水量平均差 Annual average precipitation difference/ mm | 113.3 | 102.5 | 137.5 | 110.9 | 107.3 | 147.9 | 147.9 | 135.9 | 119.7 |
造林时间 Afforestation time | 2007 | 2014 | 2008 | 2007 | 2011 | 2014 | 2014 | 2014 | 2014 |
Table 2
Origin of 15 clones in Populus Section Aigeiros"
序号 No. | 试验编号 Trial number | 无性系名称 Clone name | 种名 Species name | 亲本起源 Original parent | 原产地 Country of origin |
1 | 36 | 2KEN8 | 美洲黑杨P. deltoides ‘2KEN8’ | 美洲黑杨自由授粉Open-pollinated progeny of P. deltoides | 意大利Italy |
2 | 50 | Drava | 美洲黑杨P. deltoides ‘Drava’(55/65) | 美洲黑杨自由授粉Open-pollinated progeny of P. deltoides | 南斯拉夫Yugoslavia |
3 | 107 | Neva | 欧美杨P. × canadensis ‘Neva’(74/76) | 美洲黑杨×欧洲黑杨P. deltoides×P. nigra | 意大利Italy |
4 | 108 | Guariento | 欧美杨P. × canadensis ‘Guariento’ | 美洲黑杨自由授粉Open-pollinated progeny of P. deltoides | 意大利Italy |
5 | 109 | Mincio | 欧美杨P. × canadensis ‘Mincio’ | 美洲黑杨自由授粉Open-pollinated progeny of P. deltoides | 意大利Italy |
6 | 111 | Bellotto | 欧美杨P. × canadensis ‘Bellotto’ | 美洲黑杨自由授粉Open-pollinated progeny of P. deltoides | 意大利Italy |
7 | Be | Bellini | 欧美杨P. × canadensis ‘Bellini’ | 美洲黑杨自由授粉Open-pollinated progeny of P. deltoides | 意大利Italy |
8 | Br | Brenta | 欧美杨P. × canadensis ‘Brenta’ | 美洲黑杨×欧洲黑杨P. deltoides×P. nigra | 意大利Italy |
9 | La | Lambro | 欧美杨P. × canadensis ‘Lambro’ | 美洲黑杨×欧洲黑杨P. deltoides×P. nigra | 意大利Italy |
10 | Me | Mella | 欧美杨P. × canadensis ‘Mella’ | 美洲黑杨×欧洲黑杨P. deltoides×P. nigra | 意大利Italy |
11 | Og | Oglio | 欧美杨P. × canadensis ‘Oglio’ | 美洲黑杨×欧洲黑杨P. deltoides×P. nigra | 意大利Italy |
12 | Pa | Panaro | 欧美杨P. × canadensis ‘Panaro’ | 美洲黑杨×欧洲黑杨P. deltoides×P. nigra | 意大利Italy |
13 | Por | Portugal | 欧美杨P. × canadensis ‘Portugal’ | 美洲黑杨自由授粉Open-pollinated progeny of P. deltoides | 葡萄牙Portugal |
14 | Ta | Taro | 欧美杨P. × interamericana ‘Taro’ | 欧美杨×欧美杨P.×canadensis×P.×canadensis | 意大利Italy |
15 | Ti | Timavo | 欧美杨P. × canadensis ‘Timavo’ | 美洲黑杨×欧美杨P. deltoides×P.×canadensis | 意大利Italy |
Table 3
Fixed effect of linear mixed effect models for 6-year-old growth traits"
效应变量 Effect variable | 胸径DBH | 树高Height | |||||||
自由度 Df | 差值平方和 Sum of squared difference | Wald | Pr(χ2) | 自由度 Df | 差值平方和 Sum of squared difference | Wald | Pr(χ2) | ||
地点Site | 8 | 860.92 | 107.62 | < 2.2e-16 | 8 | 513.6 | 64.2 | 6.938e-11 | |
残差(均方) Residual(MS) | — | 1.0 | — | — | — | 1.0 | — | — |
Table 4
Random effect of linear mixed effect models for 6-year-old growth traits"
效应变量 Effect variable | 胸径DBH | 树高Height | |||||
方差分量 Variance component | 标准误 Standard error | z值 z.ratio | 方差分量 Variance component | 标准误 Standard error | z值 z.ratio | ||
区组Block | 0.537 3 | 0.412 9 | 1.30 | 0.105 6 | 0.083 8 | 1.26 | |
无性系Clone | 0.782 4 | 0.370 3 | 2.11 | 0.149 7 | 0.098 6 | 1.52 | |
无性系×地点Clone×Location | 0.733 0 | 0.174 2 | 4.21 | 0.458 4 | 0.107 1 | 4.28 | |
残差Residual | |||||||
北京昌平Changping, Beijing!R | 5.342 7 | 0.215 5 | 24.79 | 3.573 4 | 0.143 7 | 24.87 | |
北京大兴Daxing, Beijing!R | 8.593 1 | 1.212 5 | 7.09 | 8.733 2 | 1.226 6 | 7.12 | |
河北永清Yongqing, Hebei!R | 3.874 4 | 0.186 3 | 20.80 | 2.080 4 | 0.100 1 | 20.78 | |
河北任丘Renqiu, Hebei!R | 3.841 3 | 0.333 4 | 11.52 | 4.569 7 | 0.395 3 | 11.56 | |
河北丰南Fengnan, Hebei!R | 7.061 0 | 0.780 6 | 9.05 | 3.637 0 | 0.402 3 | 9.04 | |
山东宁阳1 Ningyang1, Shandong!R | 6.639 3 | 0.706 6 | 9.40 | 3.321 8 | 0.352 8 | 9.42 | |
山东宁阳2 Ningyang2, Shandong!R | 4.478 8 | 0.456 4 | 9.81 | 2.449 9 | 0.249 4 | 9.82 | |
山东金乡Jinxiang, Shandong!R | 4.671 2 | 0.449 9 | 10.38 | 0.739 7 | 0.071 1 | 8.05 | |
河北魏县Weixian, Hebei!R | 7.001 0 | 0.864 9 | 8.09 | 2.984 3 | 0.370 5 | 8.05 |
艾斯克F, 霍兰德J, 蒙特卡C. 2019. 动植物育种遗传数据分析. 林元震, 丁昌俊, 译. 北京: 科学出版社. | |
Isik F, Holland J, Maltecca C. 2019. Genetic data analysis for plant and animal breeding. Lin Y Z, Ding C J, translation. Beijing: Science Press. [in Chinese] | |
程玲, 张心菲, 张鑫鑫, 等. 基于BLUP和GGE双标图的林木多地点试验分析. 西北农林科技大学学报: 自然科学版, 2018, 46 (3): 87- 93. | |
Cheng L , Zhang X F , Zhang X X , et al. Forestry multi-environment trial analysis based on BLUP and GGE biplot. Journal of Northwest A & F University: Natural Science Edition, 2018, 46 (3): 87- 93. | |
李火根, 黄敏仁, 潘惠新, 等. 美洲黑杨新无性系生长遗传稳定性分析. 东北林业大学学报, 1997, 25 (6): 1- 5. | |
Li H G , Huang M R , Pan H X , et al. The genetic stability analysis of growth for new cottonwood clones. Journal of Northeast Forestry University, 1997, 25 (6): 1- 5. | |
林元震. R与ASReml-R统计学. 北京: 中国林业出版社, 2016. | |
Lin Y Z . R and ASReml-R statistics. Beijing: China Forestry Publishing House, 2016. | |
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151. | |
Lin Y Z . Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151. | |
刘宁, 丁昌俊, 李波, 等. 2020. 12个欧美杨无性系生长初期基因型与环境的互作效应. 林业科学, 56(8): 63-72. | |
Liu N, Ding C J, Li B, at al. 2020. Effects of genotype by environment interaction of 12 Populus×euramericana clones in their early growth. Scientia Silvae Sinicae, 56(8): 63-72. [in Chinese] | |
马 浩 , 李 荣幸 . 遗传值最佳线性无偏预测及其在树木育种中的应用. 北京林业大学学报, 1996, 18 (4): 69- 76.
doi: 10.3321/j.issn:1000-1522.1996.04.012 |
|
Ma H , Li R X . Best linear unbiased prediction of genetic value in forest breeding. Journal of Beijing Forestry University, 1996, 18 (4): 69- 76.
doi: 10.3321/j.issn:1000-1522.1996.04.012 |
|
苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策. 林业科学研究, 2010, 23 (1): 31- 37. | |
Su X H , Ding C J , Ma C G . Research progress and strategies of poplar breeding in China. Forest Research, 2010, 23 (1): 31- 37. | |
孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析. 北京林业大学学报, 2011, 33 (2): 65- 71. | |
Sun X M , Yang X Y . Applications and analysis of methods for breeding value prediction in forest trees. Journal of Beijing Forestry University, 2011, 33 (2): 65- 71. | |
徐纬英. 杨树. 哈尔滨: 黑龙江人民出版社, 1988. | |
Xu W Y . Poplar. Harbin: People Publishing House of Heilongjiang Province, 1988. | |
严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36 (11): 1805- 1819. | |
Yan W K . Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36 (11): 1805- 1819. | |
张绮纹, 李金花. 杨树工业用材林新品种. 北京: 中国林业出版社, 2003. | |
Zhang Q W , Li J H . New cultivars of poplar industrial plantation. Beijing: China Forestry Publishing House, 2003. | |
赵曦阳, 李颖, 赵丽, 等. 不同地点白杨杂种无性系生长和适应性表现分析和评价. 北京林业大学学报, 2013, 35 (6): 7- 14. | |
Zhao X Y , Li Y , Zhao L , et al. Analysis and evaluation of growth and adaptive performance of white poplar hybrid clones in different sites. Journal of Beijing Forestry University, 2013, 35 (6): 7- 14. | |
郑聪慧, 张鸿景, 王玉忠, 等. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析. 林业科学, 2019, 55 (8): 73- 83. | |
Zheng C H , Zhang H J , Wang Y Z , et al. An analysis of a regional trial of Larix principis-rupprechtii families based on BLUP and GGE biplot. Scientia Silvae Sinicae, 2019, 55 (8): 73- 83. | |
Bentzer B G , Foster G S , Hellberg A R , et al. Genotype×environment interaction in Norway spruce involving three levels of genetic control: seed source, clone mixture, and clone. Canada Journal Forestry Research, 1988, 1 (8): 1172- 1181. | |
Cullis B R , Jefferson P , Thompson R , et al. Factor analytic and reduced animal models for the investigation of additive genotype-by-environment interaction in outcrossing plant species with application to a Pinus radiata breeding programme. Theoretical and Applied Genetics, 2014, 217 (10): 2193- 2210. | |
Li B , Wu R . Heterosis and genotype×environment interactions of juvenile aspens in two contrasting sites. Canadian Journal of Forest Research, 1997, 27 (10): 1525- 1537. | |
Li Y , Suontama M , Burdon R D , et al. Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetics & Genomes, 2017, 13 (3): 60- 77.
doi: 10.1007/s11295-017-1144-x |
|
Nelson N D , Berguson W E , Mcmahon B G , et al. Growth performance and stability of hybrid poplar clones in simultaneous tests on six sites. Biomass and Bioenergy, 2018, 118 (NOV.): 115- 125. | |
Pliura A , Zhang S Y , Mackay J , et al. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. Forest Ecology and Management, 2007, 238 (1): 92- 106. | |
Rae A M , Pinel M P , Bastien C , et al. QTL for yield in bioenergy Populus: identifying G×E interactions from growth at three contrasting sites. Tree Genetics & Genomes, 2008, 4 (1): 97- 112. | |
Sixto H , Salvia J , Barrio M , et al. Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New Forests, 2011, 42 (2): 163- 177.
doi: 10.1007/s11056-010-9244-6 |
|
Sixto H , Gil P , Ciria P , et al. Performance of hybrid poplar clones in short rotation coppice in Mediterranean environments: analysis of genotypic stability. GCB Bioenergy, 2015, 6, 661- 671. | |
Ukalski K , Klisz M . Application of GGE biplot graphs in multi-environment trials on selection of forest trees. Folia Forestalia Polonica, 2016, 58 (4): 228- 239.
doi: 10.1515/ffp-2016-0026 |
|
Wu R , Stettler R F . Quantitative genetics of growth and development in Populus II: The partitioning of genotype×environment interaction in stem growth. Heredity, 1997, 78, 124- 134. | |
Yan W , Hunt L A , Sheng Q L , et al. Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Science, 2000, 40, 596- 605. | |
Yu Q , Pulkkinen P . Genotype-environment interaction and stability in growth of aspen hybrid clones. Forest Ecology and Management, 2003, 173 (1): 25- 35. | |
Zalesny Jr R S , Hall R B , Zalesny J A , et al. Biomass and genotype×environment interactions of Populus energy crops in the Midwestern United States. BioEnergy Research, 2009, 2 (3): 106- 122.
doi: 10.1007/s12155-009-9039-9 |
[1] | Shouke Zhang,Linxin Fang,Yi Wang,Wei Zhang,Jinping Shu,Yangdong Wang,Haojie Wang. Evaluation Model for Resistance of Camellia oleifera to Curculio chinensis (Coleoptera: Curculionidae) Based on Fruit Properties [J]. Scientia Silvae Sinicae, 2020, 56(12): 67-74. |
[2] | Sheng Zhu,Minren Huang. Recent Advances and Prospect of the Genomic Selection in Forest Genetics and Tree Breeding [J]. Scientia Silvae Sinicae, 2020, 56(11): 176-186. |
[3] | Yunpeng Wang,Rui Zhang,Zhichun Zhou,Shaohua Huang,Lizhen Ma,Huihua Fan. Dynamic Patterns of Genetic Variation in Early Growth Traits of the Open-Pollinated Families of Schima superba Plus Tree [J]. Scientia Silvae Sinicae, 2020, 56(9): 77-86. |
[4] | Ning Liu,Changjun Ding,Bo Li,Mi Ding,Xiaohua Su,Qinjun Huang. Effects of Genotype by Environment Interaction of 12 Populus×euramericana Clones in Their Early Growth [J]. Scientia Silvae Sinicae, 2020, 56(8): 63-72. |
[5] | Pengfei Xu,Yanhong Yang,Yuting Zhang,Yun Chen,Dingqin Tang. Induction and Preliminary Identification of Tetraploid in Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2020, 56(8): 55-62. |
[6] | Minjing Shi,Shuguang Yang,Shixin Zhang,Shunnan Deng,Xin He,Yueyi Chen,Weimin Tian. Characterization of Secondary Laticifer Differentiation of Epicormic Shoots Induced by Mechanical Wounding in Wickham Germplasm of Rubber Tree [J]. Scientia Silvae Sinicae, 2020, 56(3): 28-37. |
[7] | Zheng Conghui, Zhang Hongjing, Wang Yuzhong, Dai Jianfeng, Dang Lei, Du Zichun, Liu Jianting, Gao Yunru. An Analysis of a Regional Trial of Larix principis-rupprechtii Families Based on BLUP and GGE Biplot [J]. Scientia Silvae Sinicae, 2019, 55(8): 73-83. |
[8] | Shen Le, Xu Jianmin, Li Guangyou, Lu Zhaohua, Yang Xueyan, Zhu Ying, Hu Yang, Song Peining, Guo Wenzhong. Genetic Parameters for Growth Traits in Eucalyptus urophylla×E. grandis F1 Hybrids [J]. Scientia Silvae Sinicae, 2019, 55(7): 68-76. |
[9] | Liu Jiming, Chen Zhong, Sun Caowen, Wang Lianchun, He Qiuyang, Dai Tengfei, Yao Na, Gao Shilun, Zhao Guochun, Shi Shuanglong, Jia Liming, Weng Xuehuang. Variation in Fruit and Seed Properties and Comprehensive Assessment of Germplasm Resources of the Genus Sapindus [J]. Scientia Silvae Sinicae, 2019, 55(6): 44-54. |
[10] | Sun Tingyu, Wang Yanli, Shen Liyuan, Wu Xiaoqin, Zhu Lihua, Ye Jianren. Impact of Medium Components on Somatic Embryo Maturation in Pinus thunbergii [J]. Scientia Silvae Sinicae, 2019, 55(4): 178-186. |
[11] | Yin Huanhuan, Liu Qinghua, Zhou Zhichun, Yu Qixin, Feng Zhongping. Genetic Variation among Clones of Masson Pine (Pinus massoniana) for Growth, Oleoresin traits and Their Correlations [J]. Scientia Silvae Sinicae, 2018, 54(12): 82-91. |
[12] | Zhao Fencheng, Guo Wenbing, Zhong Suiying, Deng Leping, Wu Huishan, Lin Changming, Liao Fangyan, Tan Zhiqiang, Li Yiliang. Effects of Indirect Selection on Wood Density Based on Resistograph Measurement of Slash Pine [J]. Scientia Silvae Sinicae, 2018, 54(10): 172-179. |
[13] | Zhang Jiangtao, Yang Shuhong, Zhu Di, Zhu Yanlin, Liu Youquan. Physiological Response of Annual Grafted Seedlings of Poplar 2025 and Its Two Bud Mutation Varieties to Drought Stress and Evaluation of Drought Resistance [J]. Scientia Silvae Sinicae, 2018, 54(6): 33-43. |
[14] | Tian Mengdi, Li Yanjie, Zhang Pingdong, Wang Jian, Hao Jingyi. Pollen Chromosome Doubling Induced by High Temperature Exposure to Produce Hybrid Triploids in Populus canescens [J]. Scientia Silvae Sinicae, 2018, 54(3): 39-47. |
[15] | Zhang Shuainan, Luan Qifu, Jiang Jingmin. Genetic Variation Analysis for Growth and Wood Properties of Slash Pine Based on The Non-Destructive Testing Technologies [J]. Scientia Silvae Sinicae, 2017, 53(6): 30-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||