Scientia Silvae Sinicae ›› 2021, Vol. 57 ›› Issue (2): 139-149.doi: 10.11707/j.1001-7488.20210214
Previous Articles Next Articles
Xuezheng Zong,Xiaorui Tian*
Received:
2019-09-06
Online:
2021-02-25
Published:
2021-03-29
Contact:
Xiaorui Tian
CLC Number:
Xuezheng Zong,Xiaorui Tian. Impacts of Fuel Treatment on Potential Fire Behavior of Main Forest Types in Daxing'anling[J]. Scientia Silvae Sinicae, 2021, 57(2): 139-149.
Table 1
Fire number and burned areas in Daxing'anling during 2000-2018"
年份 Year | 火发生次数 Fire number | 森林过火面积 Burned area/hm2 | |
2000 | 94 | 19 698.2 | |
2001 | 18 | 93.7 | |
2002 | 87 | 121.5 | |
2003 | 71 | 251 373.4 | |
2004 | 22 | 18 829.1 | |
2005 | 58 | 21 992.1 | |
2006 | 17 | 81 121.1 | |
2007 | 100 | 817.0 | |
2008 | 84 | 4 187.4 | |
2009 | 54 | 2 606.1 | |
2010 | 30 | 1 539.9 | |
2011 | 44 | 58.5 | |
2012 | 49 | 235.0 | |
2013 | 14 | 11.0 | |
2014 | 33 | 140.9 | |
2015 | 94 | 157.7 | |
2016 | 29 | 42.5 | |
2017 | 97 | 238.7 | |
2018 | 44 | 2 411.6 | |
合计Total | 1 039 | 405 675.4 |
Table 2
Base information of each plot"
样地 Plot | 林分起源 Forest types | 树种组成① Tree species composition | 林龄 Stand age/a | 郁闭度 Canopy density | 树高 Average height/ m | 胸径 Average DBH/cm | 密度 Density/(hm-2) | 可燃物梯Ladder fuels | 海拔 Altitude/m | 坡向 Aspect | 坡度 Slope(%) | |
最低 Min. height/m | 最高 Max. height/m | |||||||||||
1 | 天然林 Natural forest | 8Lg 2Bp | Lg24 Bp20 | 0.90 | 12.4/9.4 | 10.4/12.5 | 2 940/735 | 0.3 | 9.0 | 517.8 | 阳坡 Sunny | 12 |
2 | Lg24 Bp20 | 0.90 | 11.8/10.4 | 10.2/12.2 | 3 140/785 | 0.3 | 9.0 | 509.1 | 12 | |||
3 | Lg24 Bp20 | 0.90 | 11.6/10.7 | 10.2/11.4 | 2 800/700 | 0.3 | 9.0 | 523.4 | 12 | |||
4 | Bp | 30 | 0.90 | 13.9 | 10.5 | 2 225 | 8.5 | 11.5 | 631.1 | 阳坡 Sunny | 8 | |
5 | 30 | 0.87 | 13.6 | 11.5 | 2 175 | 8.5 | 11.7 | 629.2 | 8 | |||
6 | 30 | 0.90 | 13.7 | 10.2 | 2 400 | 8.0 | 12.5 | 625.7 | 7 | |||
7 | Lg | 25 | 0.90 | 12.6 | 11.1 | 2 450 | 0.2 | 10.7 | 544.9 | 阳坡 Sunny | 8 | |
8 | 25 | 0.90 | 11.2 | 10.1 | 3 200 | 0.2 | 11.0 | 538.4 | 8 | |||
9 | 25 | 0.90 | 12.3 | 10.9 | 3 425 | 0.2 | 11.0 | 533.6 | 8 | |||
10 | 人工林 Plantation | Lg | 33 | 0.84 | 15.1 | 13.2 | 2 600 | 2.7 | 13.4 | 352.7 | 阳坡 Sunny | 7 |
11 | 33 | 0.85 | 15.7 | 14.2 | 2 525 | 2.5 | 13.5 | 354.6 | 7 | |||
12 | 33 | 0.85 | 15.4 | 14.6 | 2 200 | 2.5 | 13.0 | 351.5 | 7 | |||
13 | Ps | 35 | 0.80 | 11.7 | 12.3 | 2 250 | 1.3 | 9.5 | 381.1 | 阳坡 Sunny | 4 | |
14 | 35 | 0.80 | 11.3 | 12.4 | 2 150 | 1.2 | 9.7 | 385.3 | 3 | |||
15 | 35 | 0.80 | 11.3 | 12.2 | 2 200 | 1.2 | 9.5 | 384.5 | 3 |
Table 3
Simulating environment for surface fires under average weather scenario %"
样地Plot | 类型Types | 活草本含水率 Live herb moisture | 活灌木含水率 Live shrub moisture | 活冠层含水率 Live crown moisture | 不同时滞可燃物含水率 | 坡度 Slope | ||
1 h | 10 h | 100 h | ||||||
1 | 兴安落叶松白桦混交林 Larch and birch natural mixed forest | 63 | 78 | 58 | 12 | 14 | 19 | 12 |
2 | 62 | 77 | 58 | 11 | 15 | 19 | 12 | |
3 | 63 | 77 | 57 | 12 | 14 | 20 | 12 | |
4 | 白桦林 Birch natural forest | 62 | 73 | 59 | 11 | 13 | 19 | 8 |
5 | 60 | 75 | 57 | 9 | 14 | 21 | 8 | |
6 | 62 | 73 | 57 | 11 | 14 | 19 | 7 | |
7 | 兴安落叶松天然林 Larch natural forest | 63 | 78 | 60 | 11 | 15 | 18 | 8 |
8 | 63 | 78 | 61 | 9 | 16 | 18 | 8 | |
9 | 63 | 77 | 60 | 9 | 16 | 17 | 8 | |
10 | 兴安落叶松人工林 Larch plantation | 60 | 77 | 63 | 8 | 11 | 17 | 7 |
11 | 61 | 77 | 62 | 8 | 12 | 16 | 7 | |
12 | 60 | 76 | 62 | 7 | 11 | 17 | 7 | |
13 | 樟子松人工林 Mongolian Scots pine plantation | 70 | 80 | 74 | 13 | 16 | 19 | 4 |
14 | 70 | 80 | 73 | 12 | 16 | 22 | 3 | |
15 | 70 | 81 | 71 | 12 | 14 | 20 | 3 |
Table 4
Indexes of the surface fire and potentialcrown fire under drought scenario"
类型Types | 描述Description | |
潜在地表火行为 Surface fire behavior potential(SFBP) | 潜在火强度Fire intensity potential(RP) | 单位面积每分钟释放能量 Energy release per unit area per unit time |
潜在蔓延速度Spread potential(SP) | 与蔓延速度呈比例(单位时间蔓延距离) Proportional to the spread(Distance per unit time) | |
潜在火焰长度 Flame length potential(FP) | 火焰最高点与燃烧区中部位置的距离 Distance between the flame tip and the middle of the flaming zone at the base of the fire | |
潜在树冠火行为 Crown fire behavior potential(CFBP) | 潜在树冠火发生指数 Crown fire initiation potential(Ic) | 地表火转化为树冠火危险性 Likelihood that surface fire will propagate into crown fires |
潜在树冠火蔓延指数 Crown-to-crown transmissivity potential(Tc) | 火在树冠蔓延的危险性 Likelihood of fire through forest canopy | |
潜在蔓延速度指数 Crown fire spread rate potential(Rc) | 潜在树冠火蔓延速度的相对指标 Relative index of crown fire spread potential |
陈百灵, 朱玉杰, 董希斌, 等. 抚育强度对大兴安岭落叶松林枯落物持水能力及水质的影响. 东北林业大学学报, 2017, 43 (8): 46- 49, 70. | |
Chen B L , Zhu Y J , Dong X B , et al. Water conservation under different fostering intensity in timber forest of Daxing'an Mountains. Journal of Northeast Forestry University, 2017, 43 (8): 46- 49, 70. | |
陈宏伟, 常禹, 胡远满, 等. 大兴安岭呼中林区森林死可燃物载量及其影响因子. 生态学杂志, 2008, (1): 50- 55. | |
Chen H W , Chang Y , Hu Y M , et al. Load of forest surface dead fuel in Huzhong area of Daxing'anling Mountains and relevant affecting factors. Chinese Journal of Ecology, 2008, (1): 50- 55. | |
陈宏伟, 胡远满, 常禹, 等. 呼中林区不同森林采伐方式对林火的长期影响模拟. 北京林业大学学报, 2011, 33 (5): 13- 19. | |
Chen H W , Hu Y M , Chang Y , et al. Simulating long-term effects of different harvesting modes on forest fire in Huzhong Forest Region, northeastern China. Journal of Beijing Forestry University, 2011, 33 (5): 13- 19. | |
高仲亮, 李岩泉, 张明远. 大兴安岭南部草甸计划烧除的防火效果评估. 林业机械与木工设备, 2015, 43 (8): 19- 21.
doi: 10.3969/j.issn.2095-2953.2015.08.004 |
|
Gao Z L , Li Y Q , Zhang M Y . Evaluation of fire prevention effect of planned burning of meadow in southern Daxing'anling. Forestry Machinery and Woodworking Equipment, 2015, 43 (8): 19- 21.
doi: 10.3969/j.issn.2095-2953.2015.08.004 |
|
胡海清, 罗斯生, 罗碧珍, 等. 森林可燃物含水率及其预测模型研究进展. 世界林业研究, 2017, 30 (3): 64- 69. | |
Hu H Q , Luo S S , Luo B Z , et al. Forest fuel moisture content and its prediction model. World Forestry Research, 2017, 30 (3): 64- 69. | |
黄小荣, 侯远瑞, 庞世龙, 等. 南宁老虎岭马尾松林间伐前后的火行为. 东北林业大学学报, 2015, 43 (7): 92- 96.
doi: 10.3969/j.issn.1000-5382.2015.07.021 |
|
Huang X R , Hou Y R , Pang S L , et al. Fire behavior of Pinus massoniana forest pre-thinning and post-thinning in Tiger Mountain, Nanning. Journal of Northeast Forestry University, 2015, 43 (7): 92- 96.
doi: 10.3969/j.issn.1000-5382.2015.07.021 |
|
黄小荣, 申文辉, 庞世龙, 等. 南宁老虎岭松栎公益林的火潜势评估. 生态学杂志, 2014, 33 (3): 602- 610. | |
Huang X R , Shen W H , Pang S L , et al. Evaluating fire potential of non-commercial pine-beech forests in Tiger Mountain, Nanning. Chinese Journal of Ecology, 2014, 33 (3): 602- 610. | |
李红振, 李凤日, 贾炜玮. 大兴安岭不同类型白桦落叶松混交林枯落物水源涵养功能. 东北林业大学学报, 2014, 42 (6): 43- 46, 52.
doi: 10.3969/j.issn.1000-5382.2014.06.010 |
|
Li H Z , Li F R , Jia W W . Water conservation of litterfall in different mixed forest types of white birch and larch in Daxing'an Mountain. Journal of Northeast Forestry University, 2014, 42 (6): 43- 46, 52.
doi: 10.3969/j.issn.1000-5382.2014.06.010 |
|
梁瀛, 李吉玫, 赵凤君, 等. 天山中部天山云杉林地表可燃物载量及其影响因素. 林业科学, 2017, 53 (12): 153- 160.
doi: 10.11707/j.1001-7488.20171218 |
|
Liang Y , Li J M , Zhao F J , et al. Surface fuel loads of Tianshan spruce forests in the Central Tianshan Mountains and the impact factors. Scientia Silvae Sinicae, 2017, 53 (12): 153- 160.
doi: 10.11707/j.1001-7488.20171218 |
|
刘志华, 常禹, 贺红士, 等. 模拟不同森林可燃物处理对大兴安岭潜在林火状况的影响. 生态学杂志, 2009, 28 (8): 1462- 1469. | |
Liu Z H , Chang Y , He H S , et al. Effects of different forest fuel treatments on potential forest fire regimes in Great Xing'an Mountains: a simulation study. Chinese Journal of Ecology, 2009, 28 (8): 1462- 1469. | |
马振宇, 陈博伟, 庞勇, 等. 基于林火特征分类模型的森林火情等级制图. 国土资源遥感, 2020, 32 (1): 43- 50. | |
Ma Z Y , Chen B W , Pang Y , et al. Forest fire potential forecast based on FCCS model. Remote Sensing for Land and Resources, 2020, 32 (1): 43- 50. | |
田晓瑞, 舒立福, 王明玉. 林火动态变化对我国东北地区森林生态系统的影响. 森林防火, 2005, (1): 21- 25.
doi: 10.3969/j.issn.1002-2511.2005.01.010 |
|
Tian X R , Shu L F , Wang M Y . Influences of fire regime changes on the forest ecosystem in northeast China. Forest Fire Prevention, 2005, (1): 21- 25.
doi: 10.3969/j.issn.1002-2511.2005.01.010 |
|
吴志伟, 贺红士, 梁宇, 等. 丰林自然保护区森林可燃物模型的建立. 应用生态学报, 2012, 23 (6): 1503- 1510. | |
Wu Z W , He H S , Liang Y . Establishment of standard forest fuel models for Fenglin Natural Reserve, Heilongjiang Province, China. Chinese Journal of Applied Ecology, 2012, 23 (6): 1503- 1510. | |
徐化成. 中国大兴安岭森林. 北京: 科学出版社, 1998. | |
Xu H C . The forest of Daxing'anling. Beijing: Science Press, 1998. | |
张思玉, 兰海涛. 针叶幼林树冠火发生的内在机制. 东北林业大学学报, 1998, (5): 78- 81. | |
Zhang S Y , Lan H T . The internal cause of occurencing crown fire in young coniferous forest. Journal of Northeast Forestry University, 1998, (5): 78- 81. | |
赵彬清, 胡同欣, 李飞, 等. 计划火烧对阿里河兴安落叶松林土壤呼吸影响. 森林工程, 2018, 34 (4): 21- 26.
doi: 10.3969/j.issn.1006-8023.2018.04.004 |
|
Zhao B Q , Hu T X , Li F , et al. Effects of soil respiration of Larix gmelinii forest and the response to prescribed fire in the Greater Xing'an Mountains. Forest Engineering, 2018, 34 (4): 21- 26.
doi: 10.3969/j.issn.1006-8023.2018.04.004 |
|
赵凤君, 王明玉, 舒立福. 森林火灾中的树冠火研究. 世界林业研究, 2010, 23 (1): 39- 43. | |
Zhao F J , Wang M Y , Shu L F . A review of crown fire research. World Forestry Research, 2010, 23 (1): 39- 43. | |
周道玮, 张正祥, 靳英华, 等. 东北植被区划及其分布格局. 植物生态学报, 2010, 34 (12): 1359- 1368. | |
Zhou D W , Zhang Z X , Jin Y H , et al. Regionalization and distribution pattern of vegetation of Northeast China. Chinese Journal of Plant Ecology, 2010, 34 (12): 1359- 1368. | |
Agee J K , Skinner C N . Basic principles of forest fuel reduction treatments. Forest Ecology and Management, 2005, 211 (1/2): 83- 96. | |
Anderson H E . Forest fuel ignitibility. Fire Technology, 1970, 6 (4): 312- 319.
doi: 10.1007/BF02588932 |
|
Arroyo L A , Pascual C , Manzanera J A . Fire models and methods to map fuel types: the role of remote sensing. Forest Ecology and Management, 2008, 256 (6): 1239- 1252.
doi: 10.1016/j.foreco.2008.06.048 |
|
Barnett K , Parks S , Miller C , et al. Beyond fuel treatment effectiveness: characterizing interactions between fire and treatments in the US. Forests, 2016, 7 (10): 237. | |
Bradstock R A , Bedward M , Cohn J S . The modelled effects of differing fire management strategies on the conifer Callitris verrucosa within semi-arid mallee vegetation in Australia. Journal of Applied Ecology, 2006, 43 (2): 281- 292.
doi: 10.1111/j.1365-2664.2006.01142.x |
|
Bradstock R A , Hammill K A , Collins L , et al. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landscape Ecology, 2010, 25 (4): 607- 619. | |
Chang Y , He H S , Bishop I , et al. Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China. International Journal of Wildland Fire, 2007, 16 (1): 34- 44. | |
Chiono L A , Fry D L , Collins B M , et al. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat. Ecosphere, 2017, 8 (1): e01648. | |
Fang L , Yang J , Zu J X , et al. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. Forest Ecology and Management, 2015, 356, 2- 12. | |
Hollingsworth L W T , Kurth L L , Parresol B R , et al. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States. Forest Ecology and Management, 2012, 273, 43- 49. | |
Keane R E , Gray K , Bacciu V , et al. Spatial scaling of wildland fuels for six forest and rangeland ecosystems of the northern Rocky Mountains, USA. Landscape Ecology, 2012, 27 (8): 1213- 1234. | |
McGinnis T W , Keeley J E , Stephens S L , et al. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests. Forest Ecology and Management, 2010, 260 (1): 22- 35. | |
Moghaddas J J , Collins B M , Menning K , et al. Fuel treatment effects on modeled landscape-level fire behavior in the northern Sierra Nevada. Canadian Journal of Forest Research, 2010, 40 (9): 1751- 1765. | |
Ottmar R D , Blake J I , Crolly W T . Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA. Forest Ecology and Management, 2012, 273, 1- 3. | |
Ottmar R D , Sandberg D V , Riccardi C L , et al. An overview of the fuel characteristic classification system-quantifying, classifying, and creating fuelbeds for resource planning. Canadian Journal of Forest Research, 2007, 37 (12): 2383- 2393. | |
Parresol B R , Blake J I , Thompson A J . Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA. Forest Ecology and Management, 2012, 273, 29- 42. | |
Pettinari M L , Chuvieco E . Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences, 2016, 12 (20): 2061- 2076. | |
Pollet J , Omi P N . Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. International Journal of Wildland Fire, 2002, 11 (1): 1- 10. | |
Prichard S J , Ottmar R D , Sandberg D V , et al. FCCS User's Guide Version 2. 0. Pacific Wildland Fire Sciences Laboratory, 2011, 1- 121. | |
Riccardi C L , Prichard S J , Sandberg D V , et al. Quantifying physical characteristics of wildland fuels using the Fuel Characteristic Classification System. Canadian Journal of Forest Research, 2007, 37 (12): 2413- 2420. | |
Rothermel R C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA, Forest Service Research Paper, INR-115. | |
Salis M , Laconi M , Ager A A , et al. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. Forest Ecology and Management, 2016, 368, 207- 221. | |
Sandberg D V , Riccardi C L , Schaaf M D . Fire potential rating for wildland fuelbeds using the Fuel Characteristic Classification System. Canadian Journal of Forest Research, 2007, 37 (12): 2456- 2463. | |
Tian X R , Cui W B , Shu L F . Evaluating fire suppression effectiveness with a burn probability model in Daxing'anling, China. Canadian Journal of Forest Research, 2020, 50, 670- 679. | |
Tian X R , Shu L F , Zhao F J , et al. Future impacts of climate change on forest fire danger in northeastern China. Journal of Forestry Research, 2011, 22 (3): 437.
doi: 10.1007/s11676-011-0185-5 |
|
Wu Z , He H S , Liu Z , et al. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China. Science of the Total Environment, 2013, 454, 30- 39. |
[1] | Miao Qinglin, Tian Xiaorui. Assessment of Burn Probability Assessment in Daxing'anling under Multi-Climatic Scenarios [J]. Scientia Silvae Sinicae, 2016, 52(10): 109-116. |
[2] | Tian Xiaorui;Wang Mingyu;Yin Li;Shu Lifu. Fire Behavior and Consumption of Fuel Loadings in Spring Season in Southern Daxing'an Mountains [J]. Scientia Silvae Sinicae, 2009, 12(3): 90-95. |
[3] | Gao Baojia;Zhang Guijuan;Zhou Guona;Zhang Hongjun;Yu Zhiyong;Li Lixue;Chi Baoli. Estimation to Dead Surface Combustible Parameters and Evaluation of Potential Surface Fire Behavior of Artificial Coniferous Forests in Chengde County [J]. Scientia Silvae Sinicae, 2009, 12(10): 163-167. |
[4] | Wang Qiuhua Shu Lifu Dai Xing'an Wang Mingyu Tian Xiaorui. Effects of Snow and Ice Disasters on Forest Fuel and Fire Behaviors in the Southern China [J]. Scientia Silvae Sinicae, 2008, 44(11): 171-176. |
[5] | Jin Sen. Fire Boundary Extracting Technique in Automatic Measurement of Rate of Spread of Forest Fire by Analyzing Series of Images [J]. Scientia Silvae Sinicae, 2007, 43(9): 44-47. |
[6] | Shu Lifu;Wang Mingyu;Tian Xiaorui;Zhang Xiaoluo;Dai Xing’an. Calculation and Description of Forest Fire Behavior Characters [J]. Scientia Silvae Sinicae, 2004, 40(3): 179-183. |
[7] | Zhang Jingqun;Kang Yongxiang;Wu Kuanrang;Zhou Xinghua. STUDIES ON THE QUANTITATIVE CLASSIFICATION AND DIVIDING INDICES OF POTENTIAL FIRE BEHAVIOR OF FOREST IN QINLING [J]. Scientia Silvae Sinicae, 2001, 37(1): 101-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||