Scientia Silvae Sinicae ›› 2021, Vol. 57 ›› Issue (1): 105-112.doi: 10.11707/j.1001-7488.20210111
Previous Articles Next Articles
Xuefeng Wang1,Zhulin Chen1,Qingjun Guan2,Jiazheng Liu1,Tian Wang1,Ying Yuan1
Received:
2019-01-10
Online:
2021-01-25
Published:
2021-03-10
CLC Number:
Xuefeng Wang,Zhulin Chen,Qingjun Guan,Jiazheng Liu,Tian Wang,Ying Yuan. Estimation Method of Carbon Stock Per Unit Area Based on Forest Image[J]. Scientia Silvae Sinicae, 2021, 57(1): 105-112.
Table 1
Selection of prediction model for carbon reserves"
模型名称Model name | 表达式Expression | 编号Number |
直线Linear | y=a0+a1x | (3) |
幂函数Power | y=a0xa1 | (4) |
倒数指数Reciprocal exponential | y=a0e-a1/x | (5) |
指数Exponential | y=a0e-a1x | (6) |
单分子式Single molecular formula | y=a0(1-a1e-a2x) | (7) |
戈珀兹Goperz | y=a0exp-a1e-a2x | (8) |
逻辑斯蒂Logistic | (9) | |
理查兹Richards | y=a0(1-e-a1x)a2 | (10) |
Table 2
Fitting parameters of models"
模型号 Model number | 模型参数Model parameters | |||
a0 | a1 | a2 | ||
(3) | -13.704 6 | 150.933 4 | ||
(4) | 145.385 5 | 1.260 9 | ||
(5) | 215.110 8 | 0.602 0 | ||
(6) | 17.338 0 | -2.346 2 | ||
(7) | 0.003 9 | -4 391.300 2 | -2.346 3 | |
(8) | 160.444 8 | 3.904 3 | 2.837 7 | |
(9) | 127.799 4 | 17.785 4 | 5.663 0 | |
(10) | 233.790 3 | 1.311 0 | 1.808 0 |
Table 3
Fitting accuracy of models"
模型号 Model number | 模型拟合优度Goodness of fit of models | 独立样本精度检验Accuracy test of independent sample | ||||||
决定系数 Coefficient of determination | 平均残差 Mean residual | 均方根误差 Root mean square error | 平均误差 Mean error | 平均绝对误差 Mean absolute error | 平均百分比误差 Mean percent error | 平均绝对百分比误差 Mean absolute percent error | ||
(3) | 0.852 | -0.051 | 11.406 | -0.089 | 10.187 | -9.581 | 27.559 | |
(4) | 0.851 | 0.281 | 11.628 | 0.281 | 10.198 | -13.060 | 28.561 | |
(5) | 0.840 | 1.370 | 12.213 | 1.370 | 10.269 | -2.311 | 29.270 | |
(6) | 0.789 | -0.989 | 13.056 | -0.989 | 11.805 | -25.341 | 39.991 | |
(7) | 0.789 | -0.421 | 13.183 | -0.421 | 11.773 | -23.826 | 39.163 | |
(8) | 0.857 | 0.329 | 11.218 | 0.329 | 9.777 | -11.815 | 27.405 | |
(9) | 0.859 | 0.186 | 11.061 | 0.189 | 9.738 | -9.384 | 25.455 | |
(10) | 0.857 | 0.413 | 11.372 | 0.413 | 9.806 | -10.496 | 26.394 |
Table 4
The form, parameters and accuracy of linear and Logistic models after adding altitude"
模型 Model | y=(b0+b1k)+a0x | (11) | (12) | ||||||
模型参数 Parameters | b0 | b1 | a0 | b0 | b1 | a0 | a1 | ||
-8.687 1 | -15.609 | 157.732 3 | 14.544 | 11.214 9 | 131.952 2 | 5.699 1 | |||
模型号 Model number | 模型拟合优度评价指标 Evaluation index of goodness of fit of models | 独立样本检验指标 Test index of independent sample | |||||||
决定系数 Coefficient of determination | 平均残差 Mean residual | 均方根误差 Root mean square error | 平均误差 Mean error | 平均绝对误差 Mean absolute error | 平均百分 比误差 Mean percent error | 平均绝对百 分比误差 Mean absolute percent error | 均方根误差 Root mean square error | ||
(11) | 0.944 | 0.396 | 5.636 | 0.356 | 4.242 | -6.386 | 14.214 | 6.165 | |
(12) | 0.949 | 0.351 | 6.165 | 0.351 | 4.229 | -4.563 | 12.565 | 5.636 |
李凤日. 长白落叶松人工林树冠形状的模拟. 林业科学, 2004, 40 (5): 16- 24.
doi: 10.3321/j.issn:1001-7488.2004.05.003 |
|
Li F R . Modeling crown profile of Larix olgensis trees. Scientia Silvae Sinicae, 2004, 40 (5): 16- 24.
doi: 10.3321/j.issn:1001-7488.2004.05.003 |
|
木村允. 陸上植物群落の生産量測定法. 東京: 共立出版株式会社, 1976. | |
Kimura M . Measurement of production of land plant communities. Tokyo: Kyoritsu Shuppan Co., Ltd, 1976. | |
魏亚伟, 周旺明, 周莉, 等. 兴安落叶松天然林碳储量及其碳库分配特征. 生态学报, 2015, 35 (1): 189- 195. | |
Wei Y W , Zhou W M , Zhou L , et al. Carbon storage and its distribution pattern in the natural Larix gmelinii forests on Daxing'an Mountains. Acta Ecologica Sinica, 2015, 35 (1): 189- 195. | |
张俊. 2008. 兴安落叶松人工林群落结构、生物量与碳储量研究. 北京: 北京林业大学硕士学位论文, 44-48. | |
Zhang J. 2008. Study on community structure, biomass and carbon storage of Larix gmelinii plantation. Beiing: MS thesis of Beijing Forestry University, 44-48.[in Chinese] | |
佐藤大七郎. 陸上植物群落の物質生産. 東京: 共立出版株式会社, 1973. | |
Satou T . Substance production of land plant community. Tokyo: Kyoritsu Shuppan Co., Ltd, 1973. | |
Brack C L , Richards G P . Carbon accounting model for forests in Australia. Environmental Pollution, 2002, 116, S187- S194.
doi: 10.1016/S0269-7491(01)00250-0 |
|
Brink A D , Pendock N E . Minimum cross entropy threshold selection. Pattern Recognition, 1996, 29 (1): 179- 188.
doi: 10.1016/0031-3203(95)00066-6 |
|
Brown S , Hall C A S , Knabe W , et al. Tropical forests: their past, present, and potential future role in the terrestrial carbon budget. Water, Air, and Soil Pollution, 1993, 70 (14): 71- 94. | |
Cao M , Woodward F I . Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 1998, 4 (2): 185- 198.
doi: 10.1046/j.1365-2486.1998.00125.x |
|
Chojnacky D C , Heath L S , Jenkins J C . Updated generalized biomass equations for North American tree species. Forestry, 2014, 87 (1): 129- 151.
doi: 10.1093/forestry/cpt053 |
|
Djomo A N , Chimi C D . Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: case study with application to remote sensing. Forest Ecology and Management, 2017, 391, 184- 193.
doi: 10.1016/j.foreco.2017.02.022 |
|
Hooman L , Fabian E F , Florian H , et al. Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geo information, 2015, 38, 229- 241.
doi: 10.1016/j.jag.2015.01.016 |
|
Johnston C A , Groffman P , Breshears D D , et al. Carbon cycling in soil. Frontiers in Ecology and the Environment, 2004, 2 (10): 522- 528.
doi: 10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2 |
|
Kondwani K , Stephen S , Robby K , et al. Species-specific allometric models for estimation of the above-ground carbon stock in Miombo woodlands of Copperbelt Province of Zambia. Forest Ecology and Management, 2018, 417, 184- 196.
doi: 10.1016/j.foreco.2018.02.044 |
|
Li C H , Lee C K . Minimum cross entropy thresholding. Pattern Recognition, 1993, 26 (4): 617- 625.
doi: 10.1016/0031-3203(93)90115-D |
|
Main-Knorn M , Cohen W B , Kennedy R E , et al. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sensing of Environment, 2013, 139 (4): 277- 290. | |
Maselli F , Chiesi M , Moriondo M , et al. Modelling the forest carbon budget of a Mediterranean region through the integration of ground and satellite data. Ecological Modelling, 2009, 220 (3): 330- 342.
doi: 10.1016/j.ecolmodel.2008.10.002 |
|
Patenaude G , Hill R A , Milne R , et al. Quantifying forest above ground carbon content using LiDAR remote Sensing. Remote Sensing of Environment, 2004, 93, 368- 380.
doi: 10.1016/j.rse.2004.07.016 |
|
Ross N , Austin S , Michael V . Measuring biomass and carbon in Delaware using an airborne profiling LiDAR. Scandinavian Journal of Forest Research, 2004, 19, 500- 511.
doi: 10.1080/02827580410019508 |
|
Rutishauser E , Noor'an F , Laumonier Y , et al. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 2013, 307, 219- 225.
doi: 10.1016/j.foreco.2013.07.013 |
|
Sileshi G W . A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management, 2014, 329, 237- 254.
doi: 10.1016/j.foreco.2014.06.026 |
[1] | Zeng Weisheng, Sun Xiangnan, Wang Liuru, Wang Wei, Pu Ying. Development of Forest Stand Volume Models Based on Airborne Laser Scanning Data [J]. Scientia Silvae Sinicae, 2021, 57(2): 31-38. |
[2] | Wang Zhikang, Xu Chenyang, Geng Zengchao, Liu Lili, Hou Lin, Du Can, Wang Qiang, Lü Dongwei. Characteristics of Soil Organic Carbon Density in Two Stands of Xinjiashan in Qinling Mountains Based on a New Method of Deducting Root Volume [J]. Scientia Silvae Sinicae, 2019, 55(6): 133-141. |
[3] | Zeng Weisheng, He Dongbei, Pu Ying, Xiao Qianhui. Individual Tree Biomass and Volume Equation System with Region and Origin in Variables for Pinus massoniana in China [J]. Scientia Silvae Sinicae, 2019, 55(2): 75-86. |
[4] | Xue Chunquan, Xu Qihu, Lin Liping, He Xiao, Luo Yong, Zhao Han, Cao Lei, Lei Yuancai. Biomass Models with Breast Height Diameter and Age for Main Nativetree Species in Guangdong Province [J]. Scientia Silvae Sinicae, 2019, 55(2): 97-108. |
[5] | Zhang Yuanchen, Su Shanyu, Liu Ping, Zhang Yuxiao, Zhang Kunpeng, Wang Jingshun. Survey of Natural Enemies in Gall of Trichagalma acutissimae (Hymenoptera: Cynipidae) and Biological of Its Predominant Parasitoids [J]. Scientia Silvae Sinicae, 2019, 55(2): 137-142. |
[6] | Weisheng Zeng,Xinyun Chen,Xueyun Yang. Biomass Modeling and Productivity Analysis of Planted Populus spp. in China [J]. Scientia Silvae Sinicae, 2019, 55(11): 1-8. |
[7] | Wang Dongzhi, Zhang Dongyan, Li Yongning, Zhang Zhidong, Li Dayong, Huang Xuanrui. Height-Diameter Relationship for Conifer Mixed Forest Based on Bayesian Nonlinear Mixed-Effects Model [J]. Scientia Silvae Sinicae, 2019, 55(11): 85-94. |
[8] | Zhulin Chen,Xuefeng Wang,Qingjun Guan. Nondestructive Estimation of Total Phosphorus Content in Canopy Leaves of Young Dalbergia odorifera [J]. Scientia Silvae Sinicae, 2019, 55(11): 145-152. |
[9] | Yanyan Ma,Lichun Jiang. Stem Taper Function for Larix gmelinii Based on Nonlinear Quantile Regression [J]. Scientia Silvae Sinicae, 2019, 55(10): 68-75. |
[10] | Shahzad Muhammad, Khurra Han, Feifei Jiang. Effects of Different Sampling Methods on Predict Precision of Individual Tree Volume Equation for Dahurian Larch [J]. Scientia Silvae Sinicae, 2018, 54(8): 99-105. |
[11] | Ma Yanyan, Jiang Lichun. Error Structure and Variance Function of Allomatric Model [J]. Scientia Silvae Sinicae, 2018, 54(2): 90-97. |
[12] | Wang Lixiang, Liu Xiaobo, Ren Lili, Shi Juan, Luo Youqing. Variety of Endophytic Fungi Associated with Conifers in Mixed Conifer Forests Invaded by Sirex noctilio [J]. Scientia Silvae Sinicae, 2017, 53(9): 81-89. |
[13] | Ma Li, Mu Changcheng, Wang Biao, Zhang Yan, Li Na. Effects of Wetland Drainage for Forestation on Carbon Source or Sink of Temperate Marshes Wetlands in Xiaoxing'an Mountains of China [J]. Scientia Silvae Sinicae, 2017, 53(10): 1-12. |
[14] | Yang Liu, Sun Huizhen. Analysis of Water Management Strategy for Larix gmelinii [J]. Scientia Silvae Sinicae, 2016, 52(6): 149-156. |
[15] | Jiang Lichun, Ma Yingli, Li Yaoxiang. Variable-Exponent Taper Models for Dahurian Larch in Different Regions of Daxing'anling [J]. Scientia Silvae Sinicae, 2016, 52(2): 17-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||