Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (7): 192-207.doi: 10.11707/j.1001-7488.LYKX20240116
• Research papers • Previous Articles
Pingping Li1,2,Yanhui Wang1,*(),Pengtao Yu1,Yirui Wang1,2,Wenbiao Duan2,Yanfang Wan1,Xiaocha Wei1,Zaijun Shi3
Received:
2024-02-26
Online:
2025-07-20
Published:
2025-07-25
Contact:
Yanhui Wang
E-mail:wangyh@caf.ac.cn
CLC Number:
Pingping Li,Yanhui Wang,Pengtao Yu,Yirui Wang,Wenbiao Duan,Yanfang Wan,Xiaocha Wei,Zaijun Shi. Growth Response of Black Locust Plantations to Site Quality and Stand Density on the Loess Plateau of China[J]. Scientia Silvae Sinicae, 2025, 61(7): 192-207.
Table 1
Basic information of study sites from literature and the inventory of authors (Guanshan Forest Farm of Jingchuan County of Gansu Province)"
省(自治区) Province (region) | 调查地点 Study sites | 年均气温 Mean annual temperature/℃ | 年均降水量 Mean annual precipitation / mm | 林龄 Forest age/a | 林分密度 Stand density/ (trees | 立地指数 Site index/m | 平均树高 Mean tree height/m | 平均胸径 Mean DBH/cm | 单株材积 Single tree volume/m3 | 林分蓄积量 Stand volume/ (m3 | 郁闭度 Canopy density | 样地数Plot quantity | 参考文献 References |
甘肃省 Gansu Province | 泾川县官山林场Guanshan Forest Farm of Jingchuan County | 9.2~10.5 | 475~555 | 7~45 | 1 100~3 240 | 10.2~15.8 | 4.1~14.9 | 2.6~17.5 | 0.001~0.174 | 10.0~169.6 | 0.5~0.9 | 38 | 笔者调查 Author’s survey |
庄浪、天水、通渭、环县Counties of Zhuanglang, Tianshui, Tongwei, Huan | 7.5~11.0 | 408~548 | 8~28 | 3 330~6 990 | 8.5~11.3 | 4.9~6.7 | 3.4~6.3 | 0.003~0.014 | 20.8~47.5 | 0.7~0.8 | 4 | ||
陕西省 Shaanxi Province | 安塞县纸坊沟流域Zhifanggou watershed, Ansai County | 8.8 | 500~543 | 9~40 | 900~2 475 | 9.9~14.6 | 5.0~12.0 | 4.7~17.5 | 0.005~0.127 | 11.1~148.4 | 0.6~0.8 | 14 | |
安塞县南沟流域Nangou watershed, Ansai County | 8.8 | 505 | 2~9 | 675~2 800 | 10.5~13.1 | 2.2~7.8 | 3.2~16.7 | 0.001~0.077 | 1.4~58.2 | 0.5~0.8 | 9 | ||
清涧、米脂、神木Counties of Qingjian, Mizhi, Shenmu | 8.5~9.6 | 440~500 | 18~25 | 2 502~3 334 | 9.2~9.9 | 6.0~8.0 | 6.6~10.8 | 0.011~0.037 | 29.0~122.2 | 0.8~0.9 | 3 | ||
山西省 Shanxi Province | 吉县蔡家川流域 Caijiachuan watershed, Jixian County | 10 | 576 | 18~36 | 667~1 625 | 10.4~13.6 | 7.2~9.0 | 7.3~11.9 | 0.007~0.038 | 7.9~61.5 | 0.6~0.8 | 8 | |
方山县和吉县 Fangshan County and Jixian County | 7.3~10.6 | 497~576 | 11~25 | 833~2 222 | 8.5~13.5 | 7.2~14.1 | 5.3~12.6 | 0.004~0.031 | 3.4~53.1 | 0.6~0.8 | 32 | ||
偏关县以南的西部沿黄一带Western area along the Yellow River south of Pianguan County | 8.0 | 500 | 2~18 | 3 193~3 433 | 8.1~12.0 | 2.3~9.3 | 2.6~9.8 | 0.001~0.025 | 1.3~84.4 | 0.3~0.9 | 48 | ||
离石Lishi County | 8.9 | 490 | 12 | 4 814 | 10.4 | 6.6 | 6.8 | 0.005 | 24.5 | 0.9 | 1 | ||
宁夏回族 自治区 Ningxia Hui Autonomous Region | 固原、西吉 Counties of Guyuan and Xiji | 6.0~6.2 | 435~478 | 11~23 | 1 665 | 4.6~7.9 | 4.6~7.1 | 7.1~8.9 | 0.025 | 41.5~41.9 | 0.7 | 2 |
Table 2
Equations of the volume of single tree of Robinia pseudoacacia plantations"
地点 Location | 立地类型 Site type | 计算公式 Equation | 参考文献 Reference | 公式编号 No. of equation |
甘肃省 Gansu Province | 阳面沟坡 Sunny gully slope | V=0.000 150 923×DBH2.541 458 | (4) | |
阴面沟坡 Shady gully slope | V=0.000 138 101×DBH2.485 315 | (5) | ||
梁坡中部 Middle part of ridge slope | V=0.000 148 933 3×DBH2.477 607 | (6) | ||
梁坡下部 Lower part of ridge slope | V=0.000 146 818×DBH2.504 261 | (7) | ||
沟底 Gully bottom | V=0.000 138 491×DBH2.516 521 | (8) | ||
陕西省 Shaanxi Province | —— | V=0.000 074 243 44×DBH | (9) | |
山西省 Shanxi Province | 阴面沟坡Shady gully slope | V=0.088 3/(1+59.02e?0.21×A) | (10) | |
阴面梁坡Shady ridge slope | V=0.044 5/(1+24.92e?0.23×A) | (11) | ||
梁峁顶Hilly top | V=0.032 9/(1+89.89e?0.27×A) | (12) | ||
阳面梁坡Sunny ridge slope | V=0.008 2/(1+119.91e?0.44×A) | (13) | ||
阳面沟坡Sunny gully slope | V=0.025 5/(1+71.39e?0.21×A) | (14) |
Table 3
Multivariate coupled models of mean tree height,mean DBH and stand volume"
生长指标 Growth parameters | 模型 Model | R2 | RMSE | 公式编号 No. of equations |
平均树高 Mean tree height /m | 0.73 | 1.16 | (18) | |
平均胸径 Mean DBH/ cm | 0.67 | 1.92 | (19) | |
林分蓄积量 Stand volume / (m3 | Vs | 0.76 | 18.00 | (20) |
Table 4
Management density scenarios of Robinia pseudoacacia plantations at different sites and ages"
立地指数 分组 Site index groups | 林龄 Forest age/a | 最大密度对应胸径 Maximum density corresponding DBH/cm | 最大密度 Maximum density/ (trees | 经营情景密度(最大密度的倍数) Management density scenarios (multiple of maximum density)/(trees | ||||
0.9 | 0.8 | 0.7 | 0.6 | 0.5 | ||||
极差 Very low (SI=4.0 m) | 10 | 3.9 | 1 884 | 1 696 | 1 507 | 1 319 | 1 130 | 942 |
20 | 5.3 | 1 760 | 1 584 | 1 408 | 1 232 | 1 056 | 880 | |
30 | 6.4 | 1 688 | 1 519 | 1 350 | 1 182 | 1 013 | 844 | |
40 | 7.2 | 1 644 | 1 480 | 1 315 | 1 151 | 986 | 822 | |
50 | 8.0 | 1 606 | 1 445 | 1 285 | 1 124 | 964 | 803 | |
差 Low (SI=6.5 m) | 10 | 4.4 | 3 148 | 2 833 | 2 518 | 2 204 | 1 889 | 1 574 |
20 | 6.0 | 2 652 | 2 387 | 2 122 | 1 856 | 1 591 | 1 326 | |
30 | 7.2 | 2 398 | 2 158 | 1 918 | 1 679 | 1 439 | 1 199 | |
40 | 8.2 | 2 232 | 2 009 | 1 786 | 1 562 | 1 339 | 1 116 | |
50 | 9.0 | 2 120 | 1 908 | 1 696 | 1 484 | 1 272 | 1 060 | |
中 Middle (SI=9.0 m) | 10 | 5.1 | 4 034 | 3 631 | 3 227 | 2 824 | 2 420 | 2 017 |
20 | 7.0 | 3 157 | 2 841 | 2 526 | 2 210 | 1 894 | 1 579 | |
30 | 8.3 | 2 767 | 2 490 | 2 214 | 1 937 | 1 660 | 1 384 | |
40 | 9.4 | 2 513 | 2 262 | 2 010 | 1 759 | 1 508 | 1 257 | |
50 | 10.4 | 2 323 | 2 091 | 1 858 | 1 626 | 1 394 | 1 162 | |
良 High (SI=11.5 m) | 10 | 6.2 | 4 302 | 3 872 | 3 442 | 3 011 | 2 581 | 2 151 |
20 | 8.3 | 3 269 | 2 942 | 2 615 | 2 288 | 1 961 | 1 635 | |
30 | 9.8 | 2 796 | 2 516 | 2 237 | 1 957 | 1 678 | 1 398 | |
40 | 11.1 | 2 487 | 2 238 | 1 990 | 1 741 | 1 492 | 1 244 | |
50 | 12.1 | 2 293 | 2 064 | 1 834 | 1 605 | 1 376 | 1 147 | |
优 Very high (SI=14.0 m) | 10 | 7.5 | 4 168 | 3 751 | 3 334 | 2 918 | 2 501 | 2 084 |
20 | 9.9 | 3 093 | 2 784 | 2 474 | 2 165 | 1 856 | 1 547 | |
30 | 11.6 | 2 609 | 2 348 | 2 087 | 1 826 | 1 565 | 1 305 | |
40 | 13.0 | 2 308 | 2 077 | 1 846 | 1 616 | 1 385 | 1 154 | |
50 | 14.2 | 2 099 | 1 889 | 1 679 | 1 469 | 1 259 | 1 050 |
Table 5
Growth differences of Robinia pseudoacacia plantations under different management scenarios"
情景序列 Sequence of scenarios | 生长指标 Growth indicators | 劣等立地Poor sites (立地质量极差和差,SI<7.5 m。Very low and low site quality, SI<7.5 m) | 中等立地Medium sites (立地质量中和良,7.5 m≤SI<12.5 m。Middle and high site quality, 7.5 m≤SI<12.5 m) | 优等立地Fertile sites (立地质量优,SI≥12.5 m。Very high site quality, SI≥12.5 m) | ||||||||||||||||
10 a | 20 a | 30 a | 40 a | 50 a | 10 a | 20 a | 30 a | 40 a | 50 a | 10 a | 20 a | 30 a | 40 a | 50 a | ||||||
trees | trees | trees | trees | trees | 4 034~4 302 trees | 3 157~3 269 trees | 2 767~2 796 trees | 2 487~2 513 trees | 2 293~2 323 trees | trees | trees | trees | trees | trees | ||||||
最大密度的1.0倍 1.0 times of the maximum density | 平均树高Mean tree height /m | 3.8~4.6 | 5.7~6.7 | 6.6~7.7 | 6.9~8.1 | 7.1~8.3 | 5.6~6.9 | 7.7~8.7 | 8.6~9.5 | 9.0~9.8 | 9.2~10 | 8.3 | 9.7 | 10.3 | 10.5 | 10.6 | ||||
平均胸径Mean DBH /cm | 3.9~4.4 | 5.3~6.0 | 6.4~7.2 | 7.2~8.2 | 8.0~9.0 | 5.1~6.2 | 7.0~8.3 | 8.3~9.8 | 9.4~11.1 | 10.4~12.1 | 7.5 | 9.9 | 11.6 | 13.0 | 14.2 | |||||
林分蓄积量Stand volume / (m3 | 2.15~5.53 | 50.03 | 95.06 | 137.55 | 177.90 | 216.77 | ||||||||||||||
郁闭度 Canopy density | 0.59~0.70 | 0.66~0.75 | 0.69~0.77 | 0.70~0.78 | 0.71~0.78 | 0.77~0.82 | 0.81~0.84 | 0.82~0.84 | 0.82~0.83 | 0.81~0.82 | 0.86 | 0.86 | 0.84 | 0.82 | 0.81 | |||||
最大密度的0.9倍 0.9 times of the maximum density | 平均树高Mean tree height /m | 3.9~4.7 | 5.8~6.7 | 6.6~7.7 | 7.0~8.1 | 7.1~8.3 | 5.7~6.9 | 7.7~8.7 | 8.6~9.5 | 9.0~9.8 | 9.2~10.0 | 8.4 | 9.8 | 10.3 | 10.5 | 10.6 | ||||
平均胸径Mean DBH /cm | 4.0~4.5 | 5.4~6.1 | 6.5~7.3 | 7.4~8.3 | 8.2~9.2 | 5.2~6.3 | 7.1~8.4 | 8.5~10.0 | 9.6~11.2 | 10.6~12.3 | 7.6 | 10.1 | 11.8 | 13.2 | 14.4 | |||||
林分蓄积量Stand volume / (m3 | 2.07~5.32 | 47.50 | 90.20 | 130.47 | 168.70 | 205.53 | ||||||||||||||
郁闭度 Canopy density | 0.58~0.69 | 0.64~0.74 | 0.67~0.76 | 0.69~0.76 | 0.70~0.76 | 0.76~0.82 | 0.80~0.83 | 0.80~0.82 | 0.80~0.81 | 0.79~0.80 | 0.85 | 0.84 | 0.82 | 0.80 | 0.79 | |||||
最大密度的0.8倍 0.8 times of the maximum density | 平均树高Mean tree height /m | 3.9~4.7 | 5.8~6.8 | 6.6~7.7 | 7.0~8.1 | 7.1~8.3 | 5.8~7.0 | 7.8~8.8 | 8.7~9.5 | 9.0~9.8 | 9.2~10.0 | 8.5 | 9.8 | 10.3 | 10.6 | 10.6 | ||||
平均胸径Mean DBH /cm | 4.1~4.6 | 5.5~6.2 | 6.7~7.5 | 7.6~8.5 | 8.4~9.4 | 5.3~6.4 | 7.2~8.6 | 8.6~10.2 | 9.8~11.5 | 10.8~12.6 | 7.8 | 10.2 | 12.0 | 13.5 | 14.7 | |||||
林分蓄积量Stand volume / (m3 | 2.00~5.09 | 44.81 | 85.06 | 122.98 | 158.97 | 193.64 | ||||||||||||||
郁闭度 Canopy density | 0.57~0.68 | 0.63~0.72 | 0.65~0.74 | 0.67~0.74 | 0.68~0.74 | 0.75~0.80 | 0.78~0.81 | 0.78~0.80 | 0.78~0.79 | 0.77~0.78 | 0.84 | 0.82 | 0.80 | 0.78 | 0.77 | |||||
最大密度的0.7倍 0.7 times of the maximum density | 平均树高Mean tree height /m | 4.0~4.8 | 5.9~6.9 | 6.7~7.8 | 7.0~8.2 | 7.1~8.3 | 5.8~7.1 | 7.9~8.8 | 8.7~9.6 | 9.1~9.9 | 9.2~10.6 | 8.5 | 9.9 | 10.4 | 10.6 | 10.7 | ||||
平均胸径Mean DBH /cm | 4.2~4.7 | 5.7~6.4 | 6.8~7.7 | 7.8~8.7 | 8.6~9.6 | 5.5~6.5 | 7.4~8.8 | 8.8~10.4 | 10.0~11.7 | 11.1~12.8 | 7.9 | 10.4 | 12.3 | 13.7 | 15.0 | |||||
林分蓄积量Stand volume / (m3 | 1.91~4.85 | 41.96 | 79.58 | 115.00 | 148.62 | 180.99 | ||||||||||||||
郁闭度 Canopy density | 0.56~0.66 | 0.61~0.71 | 0.63~0.72 | 0.65~0.72 | 0.65~0.72 | 0.74~0.79 | 0.76~0.79 | 0.76~0.78 | 0.76 | 0.75 | 0.82 | 0.80 | 0.78 | 0.76 | 0.74 | |||||
最大密度的0.6倍 0.6 times of the maximum density | 平均树高Mean tree height /m | 4.1~4.9 | 6.0~7.0 | 6.7~7.8 | 7.0~8.2 | 7.2~8.3 | 5.9~7.2 | 7.9~8.9 | 8.8~9.6 | 9.1~9.9 | 9.2~10.0 | 8.6 | 9.9 | 10.4 | 10.6 | 10.7 | ||||
平均胸径Mean DBH /cm | 4.3~4.8 | 5.9~6.6 | 7.0~7.9 | 8.0~9.0 | 8.8~9.9 | 5.6~6.7 | 7.6~9.0 | 9.1~10.6 | 10.3~12.0 | 11.4~13.2 | 8.1 | 10.7 | 12.5 | 14.1 | 15.3 | |||||
林分蓄积量Stand volume / (m3 | 1.82~4.58 | 38.88 | 73.69 | 106.44 | 137.49 | 167.40 | ||||||||||||||
郁闭度 Canopy density | 0.54~0.65 | 0.59~0.68 | 0.61~0.69 | 0.62~0.69 | 0.63~0.69 | 0.72~0.77 | 0.74~0.77 | 0.74~0.75 | 0.73~0.74 | 0.72 | 0.80 | 0.77 | 0.75 | 0.73 | 0.71 | |||||
最大密度的0.5倍 0.5 times of the maximum density | 平均树高Mean tree height /m | 4.2~5.1 | 6.1~7.1 | 6.8~7.9 | 7.1~8.3 | 7.2~8.3 | 6.1~7.3 | 8.0~9.0 | 8.8~9.7 | 9.1~9.9 | 9.3~10.0 | 8.7 | 10.0 | 10.4 | 10.6 | 10.7 | ||||
平均胸径Mean DBH /cm | 4.5~5.0 | 6.1~6.8 | 7.3~8.1 | 8.3~9.3 | 9.2~10.2 | 5.8~6.9 | 7.9~9.2 | 9.4~10.9 | 10.6~12.4 | 11.7~13.6 | 8.4 | 11.0 | 12.9 | 14.4 | 15.8 | |||||
林分蓄积量Stand volume / (m3 | 1.71~4.29 | 35.53 | 67.28 | 97.12 | 125.40 | 152.64 | ||||||||||||||
郁闭度 Canopy density | 0.52~0.62 | 0.56~0.65 | 0.58~0.66 | 0.59~0.66 | 0.59~0.66 | 0.70~0.75 | 0.71~0.73 | 0.70~0.72 | 0.69~0.70 | 0.68~0.69 | 0.77 | 0.74 | 0.71 | 0.69 | 0.67 |
常译方, 毕华兴, 许华森, 等. 晋西黄土区不同密度刺槐林对土壤水分的影响. 水土保持学报, 2015, 29 (6): 227- 232. | |
Chang Y F, Bi H X, Xu H S, et al. Influence of different densities Robinia pseudoacacia forests on soil moisture in Loess Region of western Shanxi Province. Journal of Soil and Water Conservation, 2015, 29 (6): 227- 232. | |
丁继伟, 张芸香, 郭跃东, 等. 华北落叶松天然林密度对林木生长的影响. 山西农业科学, 2018, 46 (6): 981- 985.
doi: 10.3969/j.issn.1002-2481.2018.06.26 |
|
Ding J W, Zhang Y X, Guo Y D, et al. Effect of natural forest density on forest growth in Larix principis–rupprechtii. Shanxi Agricultural Science, 2018, 46 (6): 981- 985.
doi: 10.3969/j.issn.1002-2481.2018.06.26 |
|
国家林业局. 2018. 全国森林经营规划: 2016—2050年. 北京: 中国林业出版社. | |
State Forestry Administration. 2018. National forest management plan: 2016−2050. Beijing: China Forestry Publishing House. [in Chinese] | |
胡良军, 邵明安. 黄土丘陵沟壑区水分的植被生产力模型: 以陕西清涧县为例. 西北植物学报, 2003, 23 (3): 438.
doi: 10.3321/j.issn:1000-4025.2003.03.014 |
|
Hu L J, Shao M A. The vegetation productivity model to water in the gully-hilly Loess Plateau area, Shaanxi Province as an example. Northwest Botanical Journal, 2003, 23 (3): 438.
doi: 10.3321/j.issn:1000-4025.2003.03.014 |
|
焦 醒, 刘广全. 黄土高原刺槐生长状况及其影响因子. 国际沙棘研究与开发, 2009, 7 (2): 42- 48. | |
Jiao X, Liu G Q. Growth status and influencing factors of Robinia pseudoacacia on the Loess Plateau. International Sea Buckthorn Research and Development, 2009, 7 (2): 42- 48. | |
景贯阳, 邸 利, 王安民, 等. 甘肃泾川不同林龄人工刺槐林的土壤水分-物理特性及渗透性研究. 四川农业大学学报, 2017, 35 (2): 193- 198. | |
Jing G Y, Di L, Wang A M, et al. Soil hydrological characteristics of different age artificial Robinia pseudoacacia forests in the gully area Loess Plateau of eastern Gansu. Journal of Sichuan Agricultural University, 2017, 35 (2): 193- 198. | |
康 迪. 2018. 黄土高原人工刺槐林群落演化特征及稳定性综合评价. 杨凌: 西北农林科技大学. | |
Kang D. 2018. Evolution characteristics and stability evaluation of artificial Robinia pseudoacacia community in the Loess Plateau of China. Yang Ling: Northwest A & F University. [in Chinese] | |
孔凌霄. 2019. 晋西黄土区刺槐林水分生产函数研究及应用. 北京: 北京林业大学. | |
Kong L X. 2019. Research and application on water production function of Robinia pseudoacacia forestlands in loess region of western Shanxi Province. Beijing: Beijing Forestry University. [in Chinese] | |
李江文, 何邦印, 李 彩, 等. 不同林龄刺槐林下植物群落物种组成及功能多样性差异分析. 植物科学学报, 2022, 40 (3): 315- 323.
doi: 10.11913/PSJ.2095-0837.2022.30315 |
|
Li J W, He B Y, Li C, et al. Differences in species composition and functional diversity of understory plant communities of Robinia pseudoacacia stands with different ages. Journal of Plant Science, 2022, 40 (3): 315- 323.
doi: 10.11913/PSJ.2095-0837.2022.30315 |
|
李平平. 2023. 黄土高原刺槐人工林多种功能的时空变化及综合经营. 哈尔滨: 东北林业大学. | |
Li P P. 2023. Spatio-temporal variation of multi-functions and integrated management of Robinia pseudoacacia plantation in Loess Plateau. Harbin: Northeast Forestry University. [in Chinese] | |
李平平, 王彦辉, 段文标, 等. 黄土高原刺槐人工林立地指数变化及评价. 林业科学, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
Li P P, Wang Y H, Duan W B, et al. Variation and evaluation of site index of black locust plantations on the Loess Plateau of Northwest China. Scientia Silvae Sinicae, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
李玉明. 1984. 渭北黄土高原刺槐二元材积表的编制. 西北林学院学报. (1): 95−98. | |
Li Y M. 1984. Compilation of binary volume table for Robinia pseudoacacia on the Weibei Loess Plateau. Journal of Northwestern College of Forestry. (1): 95−98. [in Chinese] | |
李宗善, 陈维梁, 焦 磊, 等. 黄土高原健康和衰退刺槐林径向生长对气候的响应. 生态学报, 2024, 44 (2): 757- 769. | |
Li Z S, Chen W L, Jiao L, et al. The climate-response pattern of radial growth for the health and decline black locust plantations on the Loess Plateau, China. Acta Ecologica Sinica, 2024, 44 (2): 757- 769. | |
刘国彬, 上官周平, 姚文艺, 等. 黄土高原生态工程的生态成效. 中国科学院院刊, 2017, 32 (1): 11- 19. | |
Liu G B, Shangguan Z P, Yao W Y, et al. Ecological effects of soil conservation in Loess Plateau. Bulletin of Chinese Academy of Sciences, 2017, 32 (1): 11- 19. | |
刘建利, 李凯荣, 易 亮, 等. 黄土高原丘陵区人工刺槐林林分结构及林下植物多样性研究. 水土保持通报, 2008, (3): 49- 52,70. | |
Liu J L, Li K R, Yi L, et al. Structure of Robinia pseudoacacia plantation and undergrowth plant diversity in the hilly area of the Loess Plateau. Bulletin of Soil and Water Conservation, 2008, (3): 49- 52,70. | |
刘金良, 于泽群, 张顺祥, 等. 渭北黄土高原区刺槐人工林健康评价体系的构建. 西北农林科技大学学报(自然科学版), 2014, 42 (6): 93- 99. | |
Liu J L, Yu Z Q, Zhang S X, et al. Establishment of forest health assessment system for black locust plantation in Weibei Loess Plateau. Journal of Northwest A & F University (Natural Science Edition), 2014, 42 (6): 93- 99. | |
刘 林, 于博威, 王小平, 等. 黄土丘陵沟壑区人工刺槐林生长特征与生物量研究. 中国水土保持, 2023, (11): 19- 22.
doi: 10.3969/j.issn.1000-0941.2023.11.010 |
|
Liu L, Yu B W, Wang X P, et al. Growth characteristics and biomass of artificial Robinia pseudoacacia in the Loess Hilly and Gully Areas. China Soil and Water Conservation, 2023, (11): 19- 22.
doi: 10.3969/j.issn.1000-0941.2023.11.010 |
|
刘亚玲, 信忠保, 李宗善, 等. 黄土丘陵区小流域不同海拔刺槐径向生长对气候的响应差异. 生态学报, 2023, 43 (24): 10119- 10130. | |
Liu Y L, Xin Z B, Li Z S, et al. Radial growth responses of black locust (Robinia pseudoacacia L. ) to climate at different elevations in a Loess Plateau watershed. Acta Ecologica Sinica, 2023, 43 (24): 10119- 10130. | |
刘延惠. 2011. 六盘山香水河小流域典型植被生长固碳及耗水特征. 北京: 中国林业科学研究院. | |
Liu Y H. 2011. The Characteristics of growth and carbon sequestration and water consumption in the small watershed of Xiangshuihe, Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
柳 洋. 2021. 陇中黄土丘陵区不同林龄刺槐林根系特征及边坡稳定性研究. 兰州: 兰州大学. | |
Liu Y. 2021. Research on the root system characteristics and slope stability of Robinia pseudoacacia L. forests with different stand ages in the loess hilly area of central Gansu. Lanzhou: Lanzhou University. [in Chinese] | |
刘 愿. 2019. 黄土丘陵区不同林龄刺槐人工林水分、养分特征. 杨凌: 西北农林科技大学. | |
Liu Y. 2019. Water and nutrient characteristics of Robinia pseudoacacia plantations of different ages in the loess hilly region. Yangling: Northwest A & F University. [in Chinese] | |
刘 愿, 陈云明, 梁思琦, 等. 陕北黄土丘陵区刺槐人工林土壤生态化学计量特征. 水土保持研究, 2019, 26 (4): 43- 49. | |
Liu Y, Chen Y M, Liang S Q, et al. Soil ecological stoichiometry characteristics of Robinia pseudoacacia plantation in the loess hilly region of Northern Shaanxi. Research of Soil and Water Conservation, 2019, 26 (4): 43- 49. | |
罗常浩, 黄甫坚, 韩太宇, 等. 树木碳储量的计算分析及最佳轮伐期的确定. 建模与仿真, 2022, 11 (6): 13. | |
Luo C H, Huang F J, Han T Y, et al. Calculation analysis of tree carbon stock and determination of optimal rotation period. Modeling and Simulation, 2022, 11 (6): 13. | |
骆崇云. 辽宁华北落叶松二元立木材积表的编制. 辽宁林业科技, 2014, (3): 51- 52,60,76.
doi: 10.3969/j.issn.1001-1714.2014.03.018 |
|
Luo C Y. Compilation of the binary standing timber volume table for North China larch in Liaoning. Liaoning Forestry Technology, 2014, (3): 51- 52,60,76.
doi: 10.3969/j.issn.1001-1714.2014.03.018 |
|
马玉玺, 杨文治, 韩仕峰, 等. 黄土高原刺槐生长动态研究. 水土保持学报, 1990, 4 (2): 26- 32. | |
Ma Y X, Yang W Z, Han S F, et al. Study on growth dynamics of Robinia pseudoacacia on the Loess Plateau. Journal of Soil and Water Conservation, 1990, 4 (2): 26- 32. | |
穆兴民, 顾朝军, 孙文义, 等. 植被恢复改变黄土高原产流模式问题初探. 人民黄河, 2019, 41 (10): 31- 39.
doi: 10.3969/j.issn.1000-1379.2019.10.007 |
|
Mu X M, Gu C J, Sun W Y, et al. Preliminary assessment effect of vegetation restoration on runoff generation pattern of the Loess Plateau. People’s Yellow River, 2019, 41 (10): 31- 39.
doi: 10.3969/j.issn.1000-1379.2019.10.007 |
|
史振华. 2009. 晋西黄土区刺槐生长与降水量的关系. 北京: 北京林业大学. | |
Shi Z H. 2009. The relationship between locust growth and precipitation at Loess Region in Shanxi Province. Beijing: Beijing Forestry University. [in Chinese] | |
孙中峰, 张学培, 朱金兆. 晋西黄土区坡面刺槐林分生长规律研究. 农业系统科学与综合研究, 2006, 22 (1): 46.
doi: 10.3969/j.issn.1001-0068.2006.01.013 |
|
Sun Z F, Zhang X P, Zhu J Z. Growth of Robinia pseudoacacia in different density on slope in Loess area in west of Shanxi Province. Agricultural Systems Science and Comprehensive Research, 2006, 22 (1): 46.
doi: 10.3969/j.issn.1001-0068.2006.01.013 |
|
王斌瑞, 高志义, 刘荩忱, 等. 山西吉县黄土残塬沟壑区剌槐数量化立地指数表的编制及其在造林地立地条件类型划分中的应用. 北京林学院学报, 1982, (3): 116- 128. | |
Wang B R, Gao Z Y, Liu J C, et al. Compilation of quantitative site index table of Robinia pseudoacacia plantations in the loess gully area of Jixian County of Shanxi Province and its application in the site classification for afforestation. Journal of Beijing Forestry College, 1982, (3): 116- 128. | |
王 力, 邵明安, 李裕元. 陕北黄土高原人工刺槐林生长与土壤干化的关系研究. 林业科学, 2004, 40 (1): 84- 91.
doi: 10.3321/j.issn:1001-7488.2004.01.014 |
|
Wang L, Shao M A, Li Y Y. Study on relationship between growth of artificial Robinia pseudoacacia plantation and soil desiccation in the Loess Plateau of Northern Shaanxi Province. Scientia Silvae Sinicae, 2004, 40 (1): 84- 91.
doi: 10.3321/j.issn:1001-7488.2004.01.014 |
|
王珊珊. 2021. 晋西黄土区刺槐林分密度定向调控研究. 北京: 北京林业大学. | |
Wang S S. 2021. Directional regulation of Robinia pseudoacacia forest density in the Loess Plateau in Western Shanxi, China. Beijing: Beijing Forestry University. [in Chinese] | |
王伟峰, 段玉玺, 张立欣, 等. 适应全球气候变化的森林固碳计量方法评述. 南京林业大学学报(自然科学版), 2016, 40 (3): 170- 176. | |
Wang W F, Duan Y X, Zhang L X, et al. Review on forest carbon sequestration counting methodology under global climate change. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40 (3): 170- 176. | |
王雄宾, 徐成立, 余新晓, 等. 华北落叶松人工林叶面积指数与立地指数、密度、林龄关系模型研究. 中国农学通报, 2015, 31 (22): 21- 25.
doi: 10.11924/j.issn.1000-6850.casb14120176 |
|
Wang X B, Xu C L, Yu X X, et al. Study on relationship model of leaf area index and site index, stand age, stand density of Larix principis-rupprechtii plantations. Chinese Agricultural Science Bulletin, 2015, 31 (22): 21- 25.
doi: 10.11924/j.issn.1000-6850.casb14120176 |
|
王雪梅. 2001. 陕西渭北刺槐林分生长收获模型研究. 杨凌: 西北农林科技大学. | |
Wang X M. 2001. Study on growth and harvest model of Robinia pseudoacacia stand in Weibei, Shaanxi Province. Yangling: Northwest A & F University. [in Chinese] | |
王依瑞, 王彦辉, 段文标, 等. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报, 2023, 34 (2): 305- 314. | |
Wang Y R, Wang Y H, Duan W B, et al. Effects of canopy density on understory plant diversity in Robinia pseudoacacia plantations on the Loess Plateau of China. Journal of Applied Ecology, 2023, 34 (2): 305- 314. | |
王佑民. 淳化县刺槐幼林生长情况与立地条件的相关分析. 陕西林业科技, 1982, (1): 25- 33. | |
Wang Y M. Correlation analysis between growth and site conditions of Robinia pseudoacacia young forest in Chunhua County. Shaanxi Forestry Science and Technology, 1982, (1): 25- 33. | |
王 云, 赵忠辉. 泾川县官山林场不同立地类型刺槐人工林生长调查分析. 甘肃林业科技, 2007, 32 (3): 26- 28.
doi: 10.3969/j.issn.1006-0960.2007.03.007 |
|
Wang Y, Zhao Z H. Study on the growth of artificial Robinia pseudoacacia forest in different site types at Guanshan Forest Farm in Jinchuan County. Journal of Gansu Forestry Science and Technology, 2007, 32 (3): 26- 28.
doi: 10.3969/j.issn.1006-0960.2007.03.007 |
|
卫三平, 李树怀, 卫正新, 等. 2002. 晋西黄土丘陵沟壑区刺槐林适宜性评价. 水土保持学报. (6): 103–106. | |
Wei S P, Li S H, Wei Z X, et al. 2002. Evaluation on suitability of Robinia pseudoacacia forests in hilly and gully region of Western Shanxi Province. Journal of Soil and Water Conservation, (6): 103–106. [in Chinese] | |
巫翠华. 2022. 刺槐人工林群落林下植物多样性研究. 杨凌: 西北农林科技大学. | |
Wu C H. 2022. Undergrowth plant diversity of Robinia pseudoacacia plantation community. Yangling: Northwest A & F University. [in Chinese] | |
相聪伟, 张建国, 段爱国, 等. 杉木林分蓄积量生长的密度及立地效应. 林业科学研究, 2014, 27 (6): 801- 808. | |
Xiang C W, Zhang J G, Duan A G, et al. Effects of planting and site quality on stand volume of Chinese fir plantation. Forest Research, 2014, 27 (6): 801- 808. | |
徐晓丽. 2019. 黄土高原刺槐适生区适宜盖度研究. 杨凌: 西北农林科技大学. | |
Xu X L. 2019. Optimal coverage of Robinia pseudoacacia on the Loess Plateau. Yangling: Northwest A & F University. [in Chinese] | |
杨文治, 马玉玺, 韩仕峰, 等. 1994. 黄土高原地区造林土壤水分生态分区研究. 水土保持学报. (1): 1–9. | |
Yang W Z, Ma Y X, Han S F. et al. 1994. Soil water ecological regionalization of afforestation in Loess Plateau. Journal of Soil and Water Conservation, (1): 1–9. [in Chinese] | |
殷鸣放, 杨 琳, 殷炜达, 等. 油松、刺槐与杨树树干材积碳储量动态变化研究. 北京林业大学学报, 2011, 33 (5): 65- 68. | |
Yin M F, Yang L, Yin W D, et al. Dynamic changes of carbon storage in trunk volume of Pinus tabulaeformis, Robinia pseudoacacia, and Populus euramericana. Journal of Beijing Forestry University, 2011, 33 (5): 65- 68. | |
玉 宝. 2010. 晋西人工林基于水分生产函数的密度调控模型研究. 北京: 北京林业大学. | |
Yu B 2010. Density regulation control model investigation based on moisture production function of Western Shanxi Province forest plantation. Beijing: Beijing Forestry University. [in Chinese] | |
玉 宝, 王百田. 晋西刺槐人工林水分生产函数. 西南林业大学学报, 2011, 31 (4): 24- 28.
doi: 10.3969/j.issn.2095-1914.2011.04.005 |
|
Yu B, Wang B T. Water production function of Robinia pseudoacacia plantation in west Shanxi Province. Journal of Southwest Forestry University, 2011, 31 (4): 24- 28.
doi: 10.3969/j.issn.2095-1914.2011.04.005 |
|
玉 宝, 王百田. 2012. 晋西刺槐人工林Sloboda高生长模型. 林业资源管理. (1): 66-69. | |
Yu B, Wang B T. 2012. Sloboda high growth model of black locust (Robinia pseudoacacia) plantation in Western Shanxi. Forest Resources Management, (1): 66–69. [in Chinese] | |
袁 瀛, 惠养瑜, 吴永麟, 等. 黄土丘陵区刺槐生产的影响因子研究. 水土保持研究, 1996, 3 (3): 146. | |
Yuan Y, Hui Y Y, Wu Y L, et al. Study of influence factors of locust growing in the loess hilly region. Research of Soil and Water Conservation, 1996, 3 (3): 146. | |
张立超, 高 婕, 林佳慧, 等. 造林密度对黄梁木幼林生长和林分蓄积量的影响. 华南农业大学学报, 2016, 37 (4): 63- 68.
doi: 10.7671/j.issn.1001-411X.2016.04.011 |
|
Zhang L C, Gao J, Lin J H, et al. Effect of planting density on the growth and stand volume of young Anthcephalus chinensis plantation. Journal of South China Agricultural University, 2016, 37 (4): 63- 68.
doi: 10.7671/j.issn.1001-411X.2016.04.011 |
|
张连翔, 王世忠, 王洪江. 辽西地区刺槐人工林的经营对策及建议. 辽宁林业科技, 2009, (2): 41- 48.
doi: 10.3969/j.issn.1001-1714.2009.02.015 |
|
Zhang L X, Wang S Z, Wang H J. Management strategies and suggestions of Robinia pseudoacacia plantation in Western Liaoning. Journal of Liaoning Forestry Science & Technology, 2009, (2): 41- 48.
doi: 10.3969/j.issn.1001-1714.2009.02.015 |
|
张晓梅, 邸 利, 史再军, 等. 甘肃泾川中沟小流域不同坡位刺槐人工林土壤水分特征. 干旱区研究, 2019, 36 (5): 1300- 1308. | |
Zhang X M, Di L, Shi Z J, et al. Soil moisture characteristics of Robinia pseudoacacia plantation at different slope positions in Jingchuan Zhonggou small watershed, Gansu. Arid Zone Research, 2019, 36 (5): 1300- 1308. | |
赵丹阳, 毕华兴, 侯贵荣, 等. 不同林龄刺槐林植被与土壤养分变化特征. 中国水土保持科学, 2021, 19 (3): 56- 63. | |
Zhao D Y, Bi H X, Hou G R, et al. Evolution of vegetation and soil nutrient of artificial Robinia pseudoacacia forest. Science of Soil and Water Conservation, 2021, 19 (3): 56- 63. | |
赵宏伟, 李宝船. 泾川县刺槐薪炭林生长状况分析. 防护林科技, 2000, (1): 17- 19.
doi: 10.3969/j.issn.1005-5215.2000.01.007 |
|
Zhao H W, Li B C. Analysis of growth of firewood forest of black locust in Jingchuan County. Protective Forest Technology, 2000, (1): 17- 19.
doi: 10.3969/j.issn.1005-5215.2000.01.007 |
|
中国森林编辑委员会. 2000. 中国森林: 第3卷. 阔叶林. 北京: 中国林业出版社, 1420–1427. | |
China Forest Editorial Committee. 2000. Chinese forests: volume 3. Broad-leaved forests. Beijing: China Forestry Publishing House, 1420–1427. [in Chinese] | |
朱朵菊. 2018. 刺槐对黄土丘陵区植物群落结构与功能的影响. 杨凌: 西北农林科技大学. | |
Zhu D J. 2018. Effects of Robinia pseudoacacia on plant community structure and function in loess hilly-gully region, China. Yangling: Northwest A & F University. [in Chinese] | |
朱 悦. 2012. 晋西黄土区土壤水分特性研究. 北京: 北京林业大学. | |
Zhu Y. 2012. Study on soil moisture characteristics in loess area of west Shanxi Province. Beijing: Beijing Forestry University. [in Chinese] | |
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for trade-offs between overstory timber production and understory plant diversity: a case-study of a larch plantation in northwest China. Land Degradation and Development, 2018, 29 (9): 2998- 3008.
doi: 10.1002/ldr.3070 |
|
Alcorn P J, Pyttel P, Jürgen Bauhus, et al. Effects of initial planting density on branch development in 4-year-old plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees. Forest Ecology & Management, 2007, 252 (1-3): 41- 51. | |
Binkley D A. A hypothesis about the interaction of tree dominance and stand production through stand development. Forest Ecology & Management, 2004, 190 (2/3): 265- 271. | |
Duncker P S, Barreiro S M, Hengeveld G M, et al. Classification of forest management approaches: a new conceptual framework and its applicability to European forestry. Ecology and Society, 2012, 17 (4): 51. | |
Gadow K V, Hui G Y. Modelling forest development. Forestry Sciences, 1999, 57 (12): 1146- 1158. | |
Harlow W M, Harrar E S, White F M. 1986. Textbook of dendrology, 6th ed. New York: McGraw-Hill Book Company, 510. | |
Harrington T B, Harrington C A, DeBell D S. Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Ecology and Management, 2009, 258 (1): 18- 25.
doi: 10.1016/j.foreco.2009.03.039 |
|
Kadunc A. Growth and yield characteristics of black locust (Robinia pseudoacacia L. ) in Slovenia. Gozd Vest, 2016, 74, 73- 87. | |
Li Q, Liu Z, Zander P, et al. Does farmland conversion improve or impair household livelihood in smallholder agriculture system? A case study of Grain for Green project impacts in China’s Loess Plateau. World Development Perspectives, 2016, 2, 43- 54.
doi: 10.1016/j.wdp.2016.10.001 |
|
Matsushita M, Takata K, Hitsuma G, et al. A novel growth model evaluating age-size effect on long-term trends in tree growth. Functional Ecology, 2015, 29 (10): 1250- 1259.
doi: 10.1111/1365-2435.12416 |
|
Meng X Y. 2006. Forest measurement. Beijing: China Forestry Press. | |
Moreno G, Cubera E. Impact of stand density on water status and leaf gas exchange in Quercus ilex. Forest Ecology and Management, 2008, 254 (1): 74- 84.
doi: 10.1016/j.foreco.2007.07.029 |
|
Moser G, Röderstein M, Soethe N, et al. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry // Beck E, Bendix J, Kottke I, et al. Gradients in a Tropical Mountain Ecosystem of Ecuador. 1st ed. Berlin: Springer, 229–242. | |
Nijnik M, Nijnik A, Lundin L, et al. 2010. A study of stakeholders ’perspectives on multifunctional forests in Europe. Forests, Trees and Livelihoods, 19(4): 341–358. | |
Schwärzel K, Zhang L, Strecker A, et al. Improved water consumption estimates of black locust plantations in China’s Loess Plateau. Forests, 2018, 9 (4): 201.
doi: 10.3390/f9040201 |
|
Wang S, Fu B J, Chen H B, et al. Regional development boundary of China’s Loess Plateau: water limit and land shortage. Land Use Policy, 2018, 74, 130- 136.
doi: 10.1016/j.landusepol.2017.03.003 |
|
Will R, Hennessey T, Lynch T, et al. Effects of planting density and seed source on loblolly pine stands in Southeastern Oklahoma. Forest Science, 2010, 56 (5): 437- 443.
doi: 10.1093/forestscience/56.5.437 |
|
Yang Y, Titus S J. Maximum size-density relationship for constraining individual tree mortality functions. Forest Ecology & Management, 2002, 168 (1-3): 259- 273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||