Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 131-145.doi: 10.11707/j.1001-7488.LYKX20240636
• Research papers • Previous Articles Next Articles
Jing Zhang1,2,Weixi Zhang1,2,Changjun Ding1,2,*(),Yanguang Chu1,2,Xiaohua Su1,2,5,Jun Zhao3,Xuehui Su4,Zhengsai Yuan1,2,Zhenghong Li1,2,Jinjin Yu1,2,Qinjun Huang1,2
Received:
2024-10-29
Online:
2025-05-20
Published:
2025-05-24
Contact:
Changjun Ding
E-mail:changjunding@caf.ac.cn
CLC Number:
Jing Zhang,Weixi Zhang,Changjun Ding,Yanguang Chu,Xiaohua Su,Jun Zhao,Xuehui Su,Zhengsai Yuan,Zhenghong Li,Jinjin Yu,Qinjun Huang. Differences in Leaf Sugar Metabolism of Populus deltoides Parents and their Hybrids with Different Growth Potentials and Different Forest Ages[J]. Scientia Silvae Sinicae, 2025, 61(5): 131-145.
Fig.1
Tree height and diameter of Populus deltoides hybrids and their parents in one- and three-year-old Different lowercase letters indicate significant differences in traits between hybrids and their parents in the same month (P<0.05). A: Tree height in 1-year-old forest; B: Ground diameter in 1-year-old forest; C: Tree height in 3-year-old forest; D: Diameter at breast height in 3-year-old forest. FP and MP are female parent and male parent, respectively. H1, H2 and H3 are high-growth potential hybrids (H1, H2, H3). L3 and L4 are low-growth potential hybrids (L3, L4)."
Table 1
Heterosis and differential analysis of net increase in tree height and diameter during critical growth period in Populus deltoides hybrids of 1年生 and 3年生"
指标 Indicators | 杂种优势 Heterosis (%) | 1年生 1-year-old | 3年生 3-year-old | |||||||||
H1 | H2 | H3 | L3 | L4 | H1 | H2 | H3 | L3 | L4 | |||
高度净增量 Net increase in height | MPH | 6.33** | 26.81** | 8.53** | –44.45 | –20.36 | 22.43** | 7.12* | 18.73** | –18.73 | –15.04 | |
HPH | 5.54** | 25.88** | 7.73** | –44.86 | –20.95 | 20.21** | 5.18* | 16.58** | –20.21 | –16.58 | ||
径粗净增量 Net increase in diameter | MPH | 24.78** | 38.55** | 14.97** | –50.74 | –17.24 | 51.32** | 17.46** | 14.29** | –35.45 | –33.33 | |
HPH | 14.98** | 27.67** | 5.94** | –54.61 | –23.74 | 50.53** | 16.84** | 13.68** | –35.79 | –33.68 |
Fig.2
Consumption of starch and sucrose at night of Populus deltoides hybrids and their parents in different forest age and month FP and MP are female parent and male parent, respectively. H1, H2 and H3 are high-growth potential hybrids (H1, H2, H3). L3 and L4 are low-growth potential hybrids (L3, L4). Different capital letters indicate significant differences (P<0.05) in different months of the same clone, while different lowercase letters indicate significant differences (P<0.05) in traits between hybrids and their parents."
Table 2
Heterosis and differential analysis of consumption of starch and sucrose at night in Populus deltoides hybrids %"
指标Indicators | 系号 Clone | 1年生 1-year-old | 3年生 3-year-old | |||||||||||
7月July | 8月August | 9月September | 7月July | 8月August | 9月September | |||||||||
MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | |||
淀粉夜间消耗量 Starch consumption at night | H1 | –2.85 | –5.75 | 0.30 | –0.35 | 6.50* | 4.44* | 9.59 | 2.91 | 1.99 | 0.44 | 12.20* | 8.99* | |
H2 | 1.18 | –1.84 | 4.33 | 3.65 | 4.61 | 2.58 | 2.68 | –3.58 | –2.18 | –3.68 | 0.25 | –2.62 | ||
H3 | 0.83 | –2.18 | 1.24 | 0.58 | –4.70 | –6.54 | 0.30 | –5.82 | 4.52 | 2.93 | 3.85 | 0.87 | ||
L3 | 7.54 | 4.32 | –1.39 | –2.03 | –16.81 | –18.42 | 1.61 | –4.60 | –4.33 | –5.79 | –13.00 | –15.49 | ||
L4 | –0.29 | –2.71 | 1.12 | 0.46 | –6.25 | –8.07 | 14.36 | 7.39 | –0.66 | –2.18 | –2.69 | –5.48 | ||
蔗糖夜间消耗量 Sucrose consumption at night | H1 | 9.45 | 5.95 | 11.31 | 3.34 | 3.79 | –5.21 | 15.86 | 15.19 | 18.18* | 2.61* | 31.63** | 26.05** | |
H2 | 0.77 | –2.45 | –4.82 | –11.64 | 6.72 | –2.53 | 0.88 | 0.29 | 4.17 | –9.56 | 13.55* | 8.73* | ||
H3 | 15.77* | 12.07* | 6.36 | –1.25 | 15.96 | 5.91 | –0.73 | –1.31 | 12.99* | –1.90* | 12.05* | 7.29* | ||
L3 | 1.18 | –2.05 | 2.23 | –5.09 | 8.24 | –1.14 | –0.88 | –1.45 | 13.62* | –1.35* | –19.53 | –22.94 | ||
L4 | –3.24 | –6.33 | 9.57 | 1.73 | 0.71 | –8.02 | 2.35 | 1.76 | –16.15 | –27.20 | 11.04* | 6.34* |
Fig.3
ADP-glucose pyrophosphorylase and sucrose phosphate synthase activity of Populus deltoides hybrids and their parents in different forest age and month FP and MP are female parent and male parent, respectively. H1, H2 and H3 are high-growth potential hybrids (H1, H2, H3). L3 and L4 are low-growth potential hybrids (L3, L4). Different capital letters indicate significant differences (P<0.05) in different months of the same clone, while different lowercase letters indicate significant differences (P<0.05) in traits between hybrids and their parents."
Table 3
Heterosis and differential analysis of ADP-glucose pyrophosphorylase and sucrose phosphate synthase activity in Populus deltoides hybrids %"
指标 Indicators | 系号 Clone | 1年生 1-year-old | 3年生 3-year-old | |||||||||||
7月July | 8月August | 9月September | 7月July | 8月August | 9月September | |||||||||
MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | |||
AGPase活性 AGPase activity | H1 | 7.29** | 5.94** | 8.41** | 5.99** | –0.14* | –4.30* | 1.23 | –4.96 | –1.44 | –2.19 | 7.05* | –0.37* | |
H2 | 2.92** | 1.63* | –5.34 | –7.46 | 18.40** | 13.47** | 2.77 | –3.52 | 9.33* | 8.50* | 0.42 | –6.55 | ||
H3 | 0.22* | –1.04* | 9.32** | 6.88** | 12.07** | 7.40** | 1.60 | –4.61 | 12.23** | 11.39** | 8.79** | 1.25** | ||
L3 | –21.17 | –22.16 | –25.99 | –27.65 | –20.60 | –23.90 | –1.51 | –7.54 | –6.52 | –7.22 | –4.06 | –10.72 | ||
L4 | –10.82 | –11.94 | 6.40** | 4.02** | –11.58 | –15.27 | –11.67 | –17.07 | 1.42 | 0.66 | –5.59 | –12.14 | ||
SPS活性 SPS activity | H1 | –1.98 | –9.88 | 1.24 | –4.92 | 8.27* | –1.67* | 4.93 | 1.53 | 13.15 | 8.80 | 9.69** | –2.44** | |
H2 | 15.93* | 6.59* | 22.43** | 14.99** | 8.92* | –1.09* | 3.98 | 0.61 | 0.19 | –3.66 | 29.04** | 14.77** | ||
H3 | 15.36* | 6.07* | 12.23* | 5.41* | 27.77** | 16.03** | –0.49 | –3.72 | 11.39 | 7.12 | 4.73* | –6.86* | ||
L3 | –3.64 | –11.40 | –6.23 | –11.93 | 12.77** | 2.41** | –5.26 | –8.33 | 1.84 | –2.07 | –16.31 | –25.57 | ||
L4 | –6.85 | –14.36 | –3.96 | –9.80 | –12.05 | –20.13 | –3.54 | –6.67 | –1.17 | –4.96 | –3.66 | –14.31 |
Fig.4
β-amylase BAM and sucrose synthase (decomposition direction) SS-I activity of Populus deltoides hybrids and their parents in different forest age and month FP and MP are female parent and male parent, respectively. H1, H2 and H3 are high-growth potential hybrids (H1, H2, H3). L3 and L4 are low-growth potential hybrids (L3, L4). Different capital letters indicate significant differences (P<0.05) in different months of the same clone, while different lowercase letters indicate significant differences (P<0.05) in traits between hybrids and their parents."
Table 4
Heterosis and differential analysis of β-amylase BAM and sucrose synthase (decomposition direction) SS-I activity in Populus deltoides hybrids %"
指标 Indicators | 系号 Clone | 1年生 1-year-old | 3年生 3-year-old | |||||||||||
7月 July | 8月August | 9月September | 7月 July | 8月August | 9月September | |||||||||
MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | MPH | HPH | |||
BAM活性 BAM activity | H1 | 0.54 | –0.69 | 1.74 | 0.03 | –0.39 | –0.89 | 3.82** | 1.77** | 5.11 | 2.45 | 3.30 | 0.18 | |
H2 | 1.18 | –0.06 | 3.11 | 1.39 | 1.11 | 0.60 | 0.87 | –1.12 | 2.91 | 0.31 | 5.20* | 2.02* | ||
H3 | 1.60 | 0.36 | 0.70 | –0.99 | 0.57 | 0.07 | 0.76 | –1.23 | 1.74 | –0.84 | 1.49 | –1.57 | ||
L3 | –0.39 | –1.60 | –2.24 | –3.88 | –0.76 | –1.25 | –0.18 | –2.15 | 0.78 | –1.77 | –4.30 | –7.20 | ||
L4 | –1.50 | –2.70 | 0.50 | –1.19 | 0.45 | –0.05 | –4.16 | –6.06 | –1.65 | –4.13 | 4.63* | 1.47* | ||
SS-I活性 SS-I activity | H1 | –4.09 | –16.30 | 0.11 | –4.34 | 1.16 | –5.50 | –3.79 | –5.89 | 1.10 | –4.06 | –2.32 | –3.11 | |
H2 | –7.88 | –19.61 | 5.64 | 0.95 | –9.34 | –15.30 | 5.63 | 3.33 | –4.41 | –9.29 | 5.07 | 4.23 | ||
H3 | 5.84 | –7.64 | 1.78 | –2.74 | –0.05 | –6.62 | –7.20 | –9.22 | –0.74 | –5.80 | –4.39 | –5.16 | ||
L3 | –1.17 | –13.75 | 17.01* | 11.81* | 8.40* | 1.27* | 0.92 | –1.28 | 6.30 | 0.87 | 6.02 | 5.17 | ||
L4 | 20.72* | 5.35* | 12.91 | 7.89 | 4.51 | –2.37 | 4.06 | 1.79 | 1.10 | –4.06 | –1.18 | –1.97 |
Fig.5
Correlation between growth traits and key indicators of starch and sucrose metabolism in different forests ages ΔH, ΔGD, and ΔDBH represent the net monthly increase of plant height, ground diameter, and breast height diameter, respectively. Δstarch and Δsucrose represent the consumption of starch and sucrose at night, respectively. AGPase, SPS, BAM, and SS-I represent the ADP-glucose pyrophosphorylase, sucrose phosphate synthase, β-amylase, and sucrose synthase (decomposition direction), respectively. * and ** indicate significant correlation (P<0.05) and extremely significant correlation (P<0.01), respectively."
Table 5
Analysis of growth regression equations between starch and sucrose metabolism biochemical traits and growth traits of Populus deltoides"
林龄 Forest age/a | 月份 Month | 生长性状 Growth traits | 生长回归方程 Growth regression equation | 复相关系数 Multiple correlation coefficient |
1 | 7 | ?H (y1) | y1 = –90.472–2.433x1+1.875x2+0.016x3+0.058x4+5.394x5–0.031x6 | 0.825** |
?GD (y2) | y2 = –8.641–0.405x1+0.101x2+0.002x3+0.003x4+0.560x5–0.002x6 | 0.879** | ||
8 | ?H (y1) | y1 = –127.231+2.666x1–6.375x2+0.021x3+0.050x4+6.854x5–0.053x6 | 0.890** | |
?GD (y2) | y2 = –6.761–0.007x1–0.349x2+0.001x3+0.004x4+0.761x5–0.017x6 | 0.908** | ||
9 | ?H (y1) | y1 = –6.023+3.387x1–1.588x2+0.011x3–0.001x4+0.427x5–0.027x6 | 0.803* | |
?GD (y2) | y2 = –11.805+0.405x1+0.256x2+0.001x3–0.002x4+0.473x5+0.001x6 | 0.816** | ||
3 | 7 | ?H (y1) | y1 = –120.290–2.816x1+6.465x2+0.004x3+0.027x4+8.467x5+0.034x6 | 0.601 |
?DBH (y2) | y2 = –211.948–3.728x1+9.304x2+0.004x3+0.076x4+10.373x5+0.076x6 | 0.736 | ||
8 | ?H (y1) | y1 = –98.469+3.756x1+2.667x2+0.013x3+0.128x4+0.497x5–0.021x6 | 0.723 | |
?DBH (y2) | y2 = –110.832+1.054x1+1.226x2+0.001x3+0.040x4+6.553x5–0.022x6 | 0.610 | ||
9 | ?H (y1) | y1 = –69.175+2.564x1+2.731x2+0.022x3+0.036x4+0.361x5–0.042x6 | 0.792* | |
?DBH (y2) | y2 = –141.008+2.970x1+3.064x2+0.013x3+0.027x4+1.294x5+0.056x6 | 0.797* |
Table 6
Path analysis of biochemical indicators and net monthly increase in height growth of Populus deltoides"
林龄 Forest age/a | 月份 Month | 因子 Factor | 与?H简单相关 Simple relevant with net monthly growth in tree height | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficients | 决策系数 Decision coefficient | |||||
?Starch | ?Sucrose | AGPase | SPS | BAM | SS-I | ||||||
1 | 7 | ?Starch | –0.159 | –0.125 | 1 | 0.017 | –0.015 | –0.014 | 0.021 | –0.010 | 0.024 |
?Sucrose | 0.169 | 0.151 | 0.020 | 1 | 0.028 | –0.022 | 0.016 | –0.019 | 0.028 | ||
AGPase | 0.607** | 0.369 | –0.045 | 0.068 | 1 | 0.113 | 0.025 | –0.056 | 0.312 | ||
SPS | 0.619** | 0.515 | –0.058 | –0.075 | 0.157 | 1 | 0.005 | 0.007 | 0.372 | ||
BAM | 0.256 | 0.209 | 0.035 | 0.022 | 0.014 | 0.002 | 1 | –0.030 | 0.063 | ||
SS-I | –0.248 | –0.159 | –0.012 | –0.020 | –0.024 | 0.002 | –0.023 | 1 | 0.054 | ||
8 | ?Starch | 0.156 | 0.105 | 1 | –0.008 | –0.003 | 0.013 | –0.017 | –0.008 | 0.022 | |
?Sucrose | –0.112 | –0.252 | –0.019 | 1 | 0.068 | –0.052 | 0.057 | –0.032 | –0.007 | ||
AGPase | 0.632** | 0.569 | –0.014 | 0.153 | 1 | 0.034 | 0.175 | –0.086 | 0.395 | ||
SPS | 0.579** | 0.404 | 0.048 | –0.084 | 0.024 | 1 | 0.104 | 0.005 | 0.305 | ||
BAM | 0.472* | 0.239 | –0.038 | 0.054 | 0.073 | 0.061 | 1 | –0.034 | 0.168 | ||
SS-I | –0.415* | –0.099 | –0.035 | –0.024 | –0.037 | –0.015 | –0.028 | 1 | 0.072 | ||
9 | ?Starch | 0.541** | 0.239 | 1 | 0.003 | 0.107 | 0.014 | –0.023 | –0.052 | 0.201 | |
?Sucrose | –0.024 | –0.125 | 0.002 | 1 | 0.010 | 0.069 | –0.019 | –0.035 | –0.010 | ||
AGPase | 0.735** | 0.580 | 0.260 | 0.047 | 1 | 0.160 | 0.065 | –0.156 | 0.516 | ||
SPS | 0.099 | –0.012 | 0.001 | 0.007 | 0.003 | 1 | 0.000 | 0.000 | –0.003 | ||
BAM | 0.109 | 0.020 | –0.002 | –0.003 | 0.002 | –0.000 | 1 | –0.003 | 0.004 | ||
SS-I | –0.392* | –0.218 | –0.047 | –0.062 | –0.059 | –0.006 | –0.027 | 1 | 0.123 | ||
3 | 7 | ?Starch | –0.008 | –0.154 | 1 | 0.046 | 0.009 | 0.009 | –0.016 | 0.029 | –0.021 |
?Sucrose | 0.360 | 0.449 | 0.133 | 1 | –0.154 | –0.180 | 0.150 | –0.154 | 0.122 | ||
AGPase | 0.170 | 0.110 | 0.007 | –0.038 | 1 | 0.055 | 0.040 | –0.007 | 0.025 | ||
SPS | 0.025 | 0.175 | 0.010 | –0.070 | 0.088 | 1 | –0.021 | 0.028 | –0.022 | ||
BAM | 0.500* | 0.408 | –0.043 | 0.136 | 0.150 | –0.050 | 1 | –0.183 | 0.242 | ||
SS-I | –0.141 | 0.205 | 0.039 | –0.070 | –0.014 | 0.032 | –0.092 | 1 | –0.100 | ||
8 | ?Starch | 0.165 | 0.211 | 1 | –0.013 | 0.064 | –0.047 | 0.060 | 0.042 | 0.025 | |
?Sucrose | 0.314 | 0.200 | –0.012 | 1 | –0.010 | 0.051 | 0.102 | 0.042 | 0.086 | ||
AGPase | 0.389* | 0.290 | 0.088 | –0.014 | 1 | 0.017 | 0.060 | –0.040 | 0.142 | ||
SPS | 0.563** | 0.544 | –0.121 | 0.138 | 0.032 | 1 | –0.085 | –0.034 | 0.317 | ||
BAM | 0.159 | 0.028 | 0.008 | 0.014 | 0.006 | –0.004 | 1 | 0.003 | 0.008 | ||
SS-I | –0.037 | –0.050 | 0.010 | 0.011 | –0.007 | –0.003 | 0.005 | 1 | 0.001 | ||
9 | ?Starch | 0.418* | 0.135 | 1 | 0.055 | 0.040 | 0.024 | 0.017 | –0.016 | 0.095 | |
?Sucrose | 0.514** | 0.158 | 0.065 | 1 | 0.034 | 0.079 | 0.038 | –0.065 | 0.137 | ||
AGPase | 0.655** | 0.515 | 0.152 | 0.115 | 1 | 0.005 | 0.115 | –0.217 | 0.409 | ||
SPS | 0.360 | 0.249 | 0.045 | 0.124 | 0.003 | 1 | 0.093 | 0.013 | 0.117 | ||
BAM | 0.282 | 0.026 | 0.003 | 0.006 | 0.006 | 0.010 | 1 | 0.001 | 0.014 | ||
SS-I | –0.421* | –0.135 | –0.019 | –0.055 | –0.057 | 0.007 | 0.006 | 1 | 0.095 |
Table 7
Path analysis of biochemical indicators and net monthly increase in diameter growth of Populus deltoides"
林龄 Forest age/a | 月份 Month | 因子 Factor | 与?GD或?DBH简单相关 Simple relevant with net monthly growth in ground diameter or DBH | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficients | 决策系数 Decision coefficient | |||||
?Starch | ?Sucrose | AGPase | SPS | BAM | SS-I | ||||||
1 | 7 | ?Starch | –0.273 | –0.233 | 1 | 0.031 | –0.028 | –0.026 | 0.039 | –0.018 | 0.073 |
?Sucrose | 0.177 | 0.092 | 0.012 | 1 | 0.017 | –0.013 | 0.010 | –0.012 | 0.024 | ||
AGPase | 0.772** | 0.610 | –0.074 | 0.112 | 1 | 0.186 | 0.042 | –0.093 | 0.570 | ||
SPS | 0.461* | 0.261 | –0.029 | –0.038 | 0.080 | 1 | 0.002 | 0.003 | 0.173 | ||
BAM | 0.277 | 0.244 | 0.041 | 0.025 | 0.017 | 0.002 | 1 | –0.035 | 0.076 | ||
SS-I | –0.250 | –0.131 | –0.010 | –0.017 | –0.020 | 0.002 | –0.019 | 1 | 0.048 | ||
8 | ?Starch | 0.148 | –0.004 | 1 | –0.001 | 0.000 | 0.001 | –0.001 | –0.001 | –0.001 | |
?Sucrose | –0.026 | –0.184 | –0.014 | 1 | 0.050 | –0.038 | 0.042 | –0.045 | –0.024 | ||
AGPase | 0.452* | 0.210 | –0.005 | 0.057 | 1 | 0.013 | 0.064 | –0.078 | 0.146 | ||
SPS | 0.607** | 0.403 | 0.048 | –0.084 | 0.024 | 1 | 0.104 | –0.060 | 0.327 | ||
BAM | 0.605** | 0.353 | –0.056 | 0.081 | 0.108 | 0.091 | 1 | –0.103 | 0.303 | ||
SS-I | –0.624** | –0.429 | –0.151 | –0.104 | –0.159 | –0.064 | –0.125 | 1 | 0.351 | ||
9 | ?Starch | 0.516** | 0.259 | 1 | 0.004 | 0.116 | 0.015 | –0.025 | –0.056 | 0.200 | |
?Sucrose | 0.093 | 0.183 | 0.003 | 1 | 0.015 | 0.100 | –0.027 | –0.052 | 0.001 | ||
AGPase | 0.758** | 0.674 | 0.302 | 0.054 | 1 | 0.185 | 0.076 | –0.182 | 0.568 | ||
SPS | 0.122 | –0.173 | 0.010 | 0.095 | 0.048 | 1 | –0.003 | –0.005 | –0.072 | ||
BAM | 0.218 | 0.202 | –0.019 | –0.030 | 0.023 | –0.004 | 1 | –0.025 | 0.047 | ||
SS-I | –0.227 | 0.083 | –0.018 | –0.023 | –0.022 | –0.002 | –0.010 | 1 | –0.045 | ||
3 | 7 | ?Starch | 0.014 | –0.181 | 1 | 0.054 | 0.011 | 0.010 | –0.019 | 0.035 | –0.038 |
?Sucrose | 0.387* | 0.572 | 0.170 | 1 | –0.197 | –0.229 | 0.191 | –0.197 | 0.116 | ||
AGPase | 0.252 | 0.093 | 0.006 | –0.032 | 1 | 0.047 | 0.034 | –0.006 | 0.038 | ||
SPS | 0.220 | 0.433 | 0.024 | –0.173 | 0.218 | 1 | –0.053 | 0.068 | 0.003 | ||
BAM | 0.537** | 0.442 | –0.046 | 0.147 | 0.162 | –0.054 | 1 | –0.198 | 0.279 | ||
SS-I | –0.153 | 0.214 | 0.041 | –0.074 | –0.014 | 0.034 | –0.096 | 1 | –0.111 | ||
8 | ?Starch | 0.155 | 0.079 | 1 | –0.005 | 0.024 | –0.018 | 0.022 | –0.016 | 0.018 | |
?Sucrose | 0.412* | 0.122 | –0.007 | 1 | –0.006 | 0.031 | 0.062 | 0.026 | 0.086 | ||
AGPase | 0.167 | 0.025 | 0.008 | –0.001 | 1 | 0.001 | 0.005 | –0.003 | 0.008 | ||
SPS | 0.169 | 0.228 | –0.051 | 0.058 | 0.014 | 1 | –0.036 | –0.014 | 0.025 | ||
BAM | 0.541** | 0.495 | 0.140 | 0.253 | 0.102 | –0.078 | 1 | 0.053 | 0.291 | ||
SS-I | 0.007 | –0.069 | 0.014 | –0.015 | –0.010 | –0.004 | 0.007 | 1 | –0.006 | ||
9 | ?Starch | 0.336 | 0.011 | 1 | 0.005 | 0.003 | 0.002 | 0.001 | –0.002 | 0.007 | |
?Sucrose | 0.521** | 0.381 | 0.156 | 1 | 0.085 | 0.190 | 0.092 | –0.157 | 0.252 | ||
AGPase | 0.499* | 0.526 | 0.155 | 0.118 | 1 | 0.005 | 0.118 | –0.221 | 0.248 | ||
SPS | 0.516** | 0.309 | 0.055 | 0.154 | 0.003 | 1 | 0.115 | 0.016 | 0.223 | ||
BAM | 0.427* | 0.103 | 0.013 | 0.025 | 0.023 | 0.038 | 1 | 0.005 | 0.077 | ||
SS-I | –0.025 | 0.267 | –0.037 | –0.110 | –0.112 | 0.014 | 0.012 | 1 | –0.085 |
丁昌俊, 张伟溪, 高 暝, 等. 不同生长势美洲黑杨转录组差异分析. 林业科学, 2016, 52 (3): 47- 58. | |
Ding C J, Zhang W X, Gao M, et al. Analysis of transcriptome differences among Populus deltoides with different growth potentials. Scientia Silvae Sinicae, 2016, 52 (3): 47- 58. | |
冯雅岚, 尹 飞, 徐 柯, 等. 2021. 蔗糖代谢及信号转导在植物发育和逆境响应中的作用. 核农学报, 35(9): 2044–2055. | |
Feng Y L, Yin F, Xu K, et al. 2021. Role of sucrose metabolism and signal transduction in plant development and stress response. Journal of Nuclear Agricultural Sciences, 35(9): 2044–2055. [in Chinese] | |
高 暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种 F1无性系光合特性的研究. 林业科学研究, 2014, 27 (6): 721- 728. | |
Gao M, Ding C J, Su X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones. Forest Research, 2014, 27 (6): 721- 728. | |
黄国伟, 苏晓华, 黄秦军. 美洲黑杨不同生长势无性系生长和生理特征的差异. 林业科学, 2012, 48 (4): 27- 34.
doi: 10.11707/j.1001-7488.20120405 |
|
Huang G W, Su X H, Huang Q J. Differences in growth and physiological characteristics in different growth vigor clones of Populus deltoides. Scientia Silvae Sinicae, 2012, 48 (4): 27- 34.
doi: 10.11707/j.1001-7488.20120405 |
|
李 洁, 姚宝花, 宋宇琴, 等. 枣不同品种和果实不同部位糖积累及相关酶活性. 林业科学, 2017, 53 (12): 30- 40.
doi: 10.11707/j.1001-7488.20171204 |
|
Li J, Yao B H, Song Y Q, et al. Sugar accumulation and the relevant enzymes activities in different parts of fruit of three jujube cultivars. Scientia Silvae Sinicae, 2017, 53 (12): 30- 40.
doi: 10.11707/j.1001-7488.20171204 |
|
栗青丽, 王灵杰, 高培军, 等. 竹茎秆快速生长期淀粉分解相关酶基因表达的分析. 浙江农林大学学报, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661 |
|
Li Q L, Wang L J, Gao P J, et al. Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period. Journal of Zhejiang A& F University, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661 |
|
刘有春, 陶承光, 魏永祥, 等. 越橘果实糖酸含量和不同发育阶段的变化及其与叶片中可溶性糖含量的相关关系. 中国农业科学, 2013, 46 (19): 4110- 4118.
doi: 10.3864/j.issn.0578-1752.2013.19.017 |
|
Liu Y C, Tao C G, Wei Y X, et al. Fruit sugar and acid content, variation at different fruit development stages and their relationship with leaf soluble sugar content of blueberry. Scientia Agricultura Sinica, 2013, 46 (19): 4110- 4118.
doi: 10.3864/j.issn.0578-1752.2013.19.017 |
|
刘 祯, 陈锐帆, 申春晖, 等. 高州油茶糖积累及其代谢相关酶活性. 林业科学研究, 2024, 37 (4): 41- 51. | |
Liu Z, Chen R F, Shen C H, et al. Sugar accumulation and the relevant enzymes activities of Camellia drupifera. Forest Research, 2024, 37 (4): 41- 51. | |
苏梦云, 周国璋, 金正法. 杉木幼苗叶片蔗糖和淀粉含量的昼夜变化. 林业科学研究, 1996, 9 (6): 650- 653.
doi: 10.3321/j.issn:1001-1498.1996.06.016 |
|
Su M Y, Zhou G Z, Jin Z F. Diurnal course of sucrose and starch contents in leaves of seedling of Chinese fir. Forest Research, 1996, 9 (6): 650- 653.
doi: 10.3321/j.issn:1001-1498.1996.06.016 |
|
苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策. 林业科学研究, 2010, 23 (1): 31- 37. | |
Su X H, Ding C J, Ma C G. Research progress and strategies of poplar breeding in China. Forest Research, 2010, 23 (1): 31- 37. | |
Chen L, Yuan Y, Wu J W, et al. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes. Rice, 2019, 12 (1): 34.
doi: 10.1186/s12284-019-0294-x |
|
Chen Z J. Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 2010, 15 (2): 57- 71.
doi: 10.1016/j.tplants.2009.12.003 |
|
Ding Y H, Zhang R, Zhu L F, et al. An enhanced photosynthesis and carbohydrate metabolic capability contributes to heterosis of the cotton (Gossypium hirsutum) hybrid ‘Huaza Mian H318’, as revealed by genome-wide gene expression analysis. BMC Genomics, 2021, 22 (1): 277.
doi: 10.1186/s12864-021-07580-8 |
|
Fahrenkrog A M, Neves L G, Resende M F R, et al. Population genomics of the eastern cottonwood (Populus deltoides). Ecology and Evolution, 2017, 7 (22): 9426- 9440.
doi: 10.1002/ece3.3466 |
|
Fujimoto R, Taylor J M, Shirasawa S, et al. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (18): 7109- 7114. | |
Fünfgeld M M F F, Wang W, Ishihara H, et al. Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. Nature Plants, 2022, 8 (5): 574- 582.
doi: 10.1038/s41477-022-01140-y |
|
Galtier N, Foyer C H, Huber J, et al. Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiology, 1993, 101 (2): 535- 543.
doi: 10.1104/pp.101.2.535 |
|
Gibon Y, Pyl E T, Sulpice R, et al. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell and Environment, 2009, 32 (7): 859- 874.
doi: 10.1111/j.1365-3040.2009.01965.x |
|
Graf A, Schlereth A, Stitt M, et al. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (20): 9458- 9463. | |
Izumi M, Hidema J, Makino A, et al. Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiology, 2013, 161 (4): 1682- 1693.
doi: 10.1104/pp.113.215632 |
|
Ko D K, Rohozinski D, Song Q X, et al. Temporal shift of circadian-mediated gene expression and carbon fixation contributes to biomass heterosis in maize hybrids. PLoS Genetics, 2016, 12 (7): e1006197.
doi: 10.1371/journal.pgen.1006197 |
|
Le Q T N, Sugi N, Furukawa J, et al. Association analysis of phenotypic and metabolomic changes in Arabidopsis accessions and their F1 hybrids affected by different photoperiod and sucrose supply. Plant Biotechnology, 2019, 36 (3): 155- 165.
doi: 10.5511/plantbiotechnology.19.0604a |
|
Lee S M, Ryu T H, Kim S I, et al. 2009. Kinetic and regulatory properties of plant ADP-glucose pyrophosphorylase genetically modified by heterologous expression of potato upreg mutants in vitro and in vivo. Plant Cell, Tissue and Organ Culture, 96: 161–170. | |
Li T Y, Wang F Q, Yasir M, et al. Expression patterns divergence of reciprocal F1 hybrids between Gossypium hirsutum and Gossypium barbadense reveals overdominance mediating interspecific biomass heterosis. Frontiers in Plant Science, 2022, 13, 892805.
doi: 10.3389/fpls.2022.892805 |
|
Li Z, Zhu A D, Song Q X, et al. Temporal regulation of the metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis. Plant Cell, 2020, 32 (12): 3706- 3722.
doi: 10.1105/tpc.20.00320 |
|
Maloney V J, Park J Y, Unda F, et al. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany, 2015, 66 (14): 4383- 4394.
doi: 10.1093/jxb/erv101 |
|
Ni Z F, Kim E-D, Ha M, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457 (7227): 327- 331.
doi: 10.1038/nature07523 |
|
Niittylä T, Messerli G, Trevisan M, et al. A previously unknown maltose transporter essential for starch degradation in leaves. Science, 2004, 303 (5654): 87- 89.
doi: 10.1126/science.1091811 |
|
Oiestad A J, Martin J M, Giroux M J. Overexpression of ADP-glucose pyrophosphorylase in both leaf and seed tissue synergistically increase biomass and seed number in rice (Oryza sativa ssp. japonica). Functional Plant Biology, 2016, 43 (12): 1194- 1204.
doi: 10.1071/FP16218 |
|
Pantin F, Simonneau T, Rolland G, et al. Control of leaf expansion: a developmental switch from metabolics to hydraulics. Plant Physiology, 2011, 156 (2): 803- 815.
doi: 10.1104/pp.111.176289 |
|
Park J Y, Canam T, Kang K Y, et al. Sucrose phosphate synthase expression influences poplar phenology. Tree Physiology, 2009, 29 (7): 937- 946.
doi: 10.1093/treephys/tpp028 |
|
Schleucher J, Vanderveer P J, Sharkey T D. Export of carbon from chloroplasts at night. Plant Physiology, 1998, 118, 1439- 1445.
doi: 10.1104/pp.118.4.1439 |
|
Schlosser A J, Martin J M, Beecher B S, et al. Enhanced rice growth is conferred by increased leaf ADP-glucose pyrophosphorylase activity. Journal of Plant Physiology and Pathology, 2014, 2 (4): 1000136. | |
Shi Q B, Xia Y, Xue N, et al. Modulation of starch synthesis in Arabidopsis via phytochrome B-mediated light signal transduction. Journal of Integrative Plant Biology, 2024, 66 (5): 973- 985.
doi: 10.1111/jipb.13630 |
|
Smidansky E D, Martin J M, Hannah L C, et al. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta, 2003, 216 (4): 656- 664.
doi: 10.1007/s00425-002-0897-z |
|
Smith A M, Zeeman S C. Starch: a flexible, adaptable carbon store coupled to plant growth. Annual Review of Plant Biology, 2020, 71, 217- 245.
doi: 10.1146/annurev-arplant-050718-100241 |
|
Stitt M, Zeeman S C. Starch turnover: pathways, regulation and role in growth. Current Opinion in Plant Biology, 2012, 15 (3): 282- 292.
doi: 10.1016/j.pbi.2012.03.016 |
|
Tian H M, Ma L Y, Zhao C, et al. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochemical and Biophysical Research Communications, 2010, 393 (3): 365- 370.
doi: 10.1016/j.bbrc.2010.01.124 |
|
Wells R. Response of leaf ontogeny and photosynthetic activity to reproductive growth in cotton. Plant Physiology, 1988, 87 (1): 274- 279.
doi: 10.1104/pp.87.1.274 |
|
Wind J, Smeekens S, Hanson J. Sucrose: metabolite and signaling molecule. Phytochemistry, 2010, 71 (14/15): 1610- 1614. | |
Yang H, Wang X C, Wei Y X, et al. Transcriptomic analyses reveal molecular mechanisms underlying growth heterosis and weakness of rubber tree seedlings. BMC Plant Biology, 2018, 18, 10.
doi: 10.1186/s12870-017-1203-3 |
|
Yi G, Shin H, Park H R, et al. Revealing biomass heterosis in the allodiploid × Brassicoraphanus, a hybrid between Brassica rapa and Raphanus sativus, through integrated transcriptome and metabolites analysis. BMC Plant Biology, 2020, 20, 252.
doi: 10.1186/s12870-020-02470-9 |
|
Zhang C J, Chen L, Shi D, et al. Characteristics of ribulose-1, 5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. South African Journal of Botany, 2007, 73 (1): 22- 28.
doi: 10.1016/j.sajb.2006.05.002 |
|
Zhang W X, Yuan Z S, Zhang J, et al. Identification and functional prediction of circRNAs in leaves of F1 hybrid poplars with different growth potential and their parents. International Journal of Molecular Sciences, 2023, 24 (3): 2284.
doi: 10.3390/ijms24032284 |
|
Zhao C Q, Yue Y S, Wu J Y, et al. Panicle removal delays plant senescence and enhances vegetative growth improving biomass production in switchgrass. Biomass and Bioenergy, 2023, 174, 106809.
doi: 10.1016/j.biombioe.2023.106809 |
[1] | Qingbin Jiang,Jingxiang Meng,Baojun Li,Haijun Chen,Bijiang Fang,Lang Guo,Shenghui Tian. Genetic Evaluation and Selection of 8-Year-Old Semi-Sibling Family of Michelia macclurei [J]. Scientia Silvae Sinicae, 2025, 61(1): 104-114. |
[2] | Zhenghong Li,Changjun Ding,Weixi Zhang,Jing Zhang,Le Shen,Tengqian Zhang,Mi Ding,Xiaohua Su,Zhongqin Wu,Fazhi Fang. Growth and Physiological Response of Seedlings of Populus deltoides Clones to Different Photoperiods [J]. Scientia Silvae Sinicae, 2023, 59(3): 127-144. |
[3] | Xiaogang Dai,Chen Chen,Liangjiao Xue,Huaitong Wu,Tongming Yin. Identification of Interspecific Hybrids between Populus deltoides and P. simonii by Using Species-Specific InDel Marker [J]. Scientia Silvae Sinicae, 2021, 57(11): 79-84. |
[4] | Cun Chen,Changjun Ding,Jing Zhang,Bo Li,Yanguang Chu,Xiaohua Su,Qinjun Huang. Population Structure Analysis and Core Collection Construction of Populus deltoides [J]. Scientia Silvae Sinicae, 2020, 56(9): 67-76. |
[5] | Yunpeng Wang,Rui Zhang,Zhichun Zhou,Shaohua Huang,Lizhen Ma,Huihua Fan. Dynamic Patterns of Genetic Variation in Early Growth Traits of the Open-Pollinated Families of Schima superba Plus Tree [J]. Scientia Silvae Sinicae, 2020, 56(9): 77-86. |
[6] | Shen Le, Xu Jianmin, Li Guangyou, Lu Zhaohua, Yang Xueyan, Zhu Ying, Hu Yang, Song Peining, Guo Wenzhong. Genetic Parameters for Growth Traits in Eucalyptus urophylla×E. grandis F1 Hybrids [J]. Scientia Silvae Sinicae, 2019, 55(7): 68-76. |
[7] | Ha Rong, Ma Yaping, Cao Bing, Guo Fangyun, Song Lihua. Effects of Simulated Elevated CO2 Concentration on Vegetative Growth and Fruit Quality in Lycium barbarum [J]. Scientia Silvae Sinicae, 2019, 55(6): 28-36. |
[8] | Wang Zhigang, Su Zhi, Liu Minghu, Zhao Yingming, Zhang Ge, Cui Zhenrong, Dan Huili, Chen Xingming. Comparision of the Resistant Characteristics of Populus alba var. pyramidalis and Populus deltoides cl. Beikang to Damages against Anoplophora glabripennis (Coleoptera: Cerambycidae) [J]. Scientia Silvae Sinicae, 2018, 54(9): 89-96. |
[9] | Zhang Jiangtao, Yang Shuhong, Zhu Di, Zhu Yanlin, Liu Youquan. Physiological Response of Annual Grafted Seedlings of Poplar 2025 and Its Two Bud Mutation Varieties to Drought Stress and Evaluation of Drought Resistance [J]. Scientia Silvae Sinicae, 2018, 54(6): 33-43. |
[10] | Zhang Shuainan, Luan Qifu, Jiang Jingmin. Genetic Variation Analysis for Growth and Wood Properties of Slash Pine Based on The Non-Destructive Testing Technologies [J]. Scientia Silvae Sinicae, 2017, 53(6): 30-36. |
[11] | Ding Changjun, Zhang Weixi, Gao Ming, Huang Qinjun, Chu Yanguang, Su Xiaohua. Analysis of Transcriptome Differences among Populus deltoides with Different Growth Potentials [J]. Scientia Silvae Sinicae, 2016, 52(3): 47-58. |
[12] | Wang Chaoying, Li Changxiao, Zhang Ye. Effects of Submergence-Drought Stresses on Growth and Physiological Characteristics of Salix rosthornii Seedlings [J]. Scientia Silvae Sinicae, 2013, 49(12): 164-170. |
[13] | Luan Qifu;Jiang Jingmin;Zhang Jianzhong;Zhang Shougong. Estimation of Heritability and Combining Ability for Growth, Stem-Straightness and Wood Density of the F1 Generation of Pinus taeda×P. caribaea [J]. Scientia Silvae Sinicae, 2011, 47(3): 178-183. |
[14] | Ren Huadong;Yao Xiaohua;Kang Wenling;Li Sheng;Wang Kailiang;Duan Fuwen. Genetic Variation and Early Selection of Provenances and Families of Acacia mearnsii [J]. Scientia Silvae Sinicae, 2010, 46(3): 153-160. |
[15] | Zhou Liang Liu;Shengquan;Zhu Yongxia;Huang Zhenying;Shao Zhuoping . Relationship between Growth Traits and Growth Stress of Masson Pine [J]. Scientia Silvae Sinicae, 2008, 44(6): 109-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||