Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 150-158.doi: 10.11707/j.1001-7488.LYKX20220793
Previous Articles Next Articles
Yamin Du,Zhu Li*,Jiali Jiang,Fangyu Yin,Jianxiong Lü
Received:
2022-11-17
Online:
2024-09-25
Published:
2024-10-08
Contact:
Zhu Li
CLC Number:
Yamin Du,Zhu Li,Jiali Jiang,Fangyu Yin,Jianxiong Lü. Water Vapor Sorption Characteristics of Wood During Cyclic Adsorption-Desorption Processes[J]. Scientia Silvae Sinicae, 2024, 60(9): 150-158.
Table 1
Fitted and physical constants calculated for H-H model isotherm adsorption and maximun adsorbed water content of sample"
试样Samples | 循环次数Cycle times | W/(g·mol?1) | Mh,max(%) | Ms,max(%) | Mt,max(%) |
CF-S | 第1次吸湿解吸循环Cycle 1 | 336.73 | 4.71 | 15.59 | 20.30 |
第2次吸湿解吸循环Cycle 2 | 297.92 | 5.39 | 13.93 | 19.32 | |
第3次吸湿解吸循环Cycle 3 | 294.35 | 5.45 | 13.52 | 18.96 | |
CF-P | 第1次吸湿解吸循环Cycle 1 | 334.62 | 4.47 | 15.26 | 19.74 |
第2次吸湿解吸循环Cycle 2 | 277.34 | 5.07 | 13.99 | 19.05 | |
第3次吸湿解吸循环Cycle 3 | 271.81 | 5.11 | 13.81 | 18.92 | |
MS-NW | 第1次吸湿解吸循环Cycle 1 | 416.18 | 3.84 | 13.17 | 17.01 |
第2次吸湿解吸循环Cycle 2 | 310.91 | 4.53 | 12.20 | 16.73 | |
第3次吸湿解吸循环Cycle 3 | 298.14 | 4.64 | 12.16 | 16.80 | |
第4次吸湿解吸循环Cycle 4 | 286.26 | 4.73 | 11.70 | 16.43 | |
第5次吸湿解吸循环Cycle 5 | 297.14 | 4.67 | 11.72 | 16.39 | |
MS-CW | 第1次吸湿解吸循环Cycle 1 | 332.27 | 4.82 | 18.97 | 23.80 |
第2次吸湿解吸循环Cycle 2 | 270.98 | 5.51 | 16.79 | 22.30 | |
第3次吸湿解吸循环Cycle 3 | 265.52 | 5.44 | 16.62 | 22.06 |
高 慧, 牛 敏, 张利萍, 等. 马尾松应压区与对应区制浆性能的比较. 东北林业大学学报, 2010, 38 (2): 42- 44.
doi: 10.3969/j.issn.1000-5382.2010.02.015 |
|
Gao H, Niu M, Zhang L P, et al. Difference in pulping properties between compression zone and opposite zone in masson pine. Journal of Northeast Forestry University, 2010, 38 (2): 42- 44.
doi: 10.3969/j.issn.1000-5382.2010.02.015 |
|
高玉磊. 2019. 高温热处理杉木的吸湿吸水性变化规律及其机理研究. 北京: 中国林业科学研究院. | |
Gao Y L. 2019. Study on the changes and its mechanism of moisture adsorption and absorption properties of high temperature heat treated Chinese fir wood. Beijing: Chinese Academy of Forestry. [in Chinese] | |
李本贵, 彭万喜, 乔建政, 等. 循环解吸-吸湿处理对尾巨桉胀缩性的影响. 木材工业, 2007, 21 (5): 16- 17, 20. | |
Li B G, Peng W X, Qiao J Z, et al. Effect of alternate adsorption-desorption treatments on shrinkage and bulking properties of Eucalyptus urophylla×grandis. China Wood Industry, 2007, 21 (5): 16- 17, 20. | |
李 珠, 殷方宇, 蒋佳荔, 等. 杉木应压木和对应木的水分吸附特性比较研究. 木材科学与技术, 2022, 36 (5): 37- 42. | |
Li Z, Yin F Y, Jiang J L, et al. Comparative studies on water vapor sorption characteristics between compression wood and opposite wood of Chinese fir. Chinese Journal of Wood Science and Technology, 2022, 36 (5): 37- 42. | |
马尔妮. 木材的水分吸着和干缩湿胀——从静态到动态的研究. 湖北农业科学, 2013, 52 (21): 5121- 5125.
doi: 10.3969/j.issn.0439-8114.2013.21.001 |
|
Ma E N. Studies on moisture sorption and hygroexpansion of wood from static condition to dynamic condition. Hubei Agricultural Sciences, 2013, 52 (21): 5121- 5125.
doi: 10.3969/j.issn.0439-8114.2013.21.001 |
|
马尔妮, 赵广杰. 木材的干缩湿胀——从平衡态到非平衡态. 北京林业大学学报, 2006, 28 (5): 133- 138.
doi: 10.3321/j.issn:1000-1522.2006.05.024 |
|
Ma E N, Zhao G J. Hygroexpansion of wood: from equilibrious state to non-equilibrious state. Journal of Beijing Forestry University, 2006, 28 (5): 133- 138.
doi: 10.3321/j.issn:1000-1522.2006.05.024 |
|
欧阳白, 李 珠, 蒋佳荔. 楸木早/晚材水分吸着与湿胀行为. 林业科学, 2021, 57 (5): 176- 183.
doi: 10.11707/j.1001-7488.20210517 |
|
Ouyang B, Li Z, Jiang J L. Hygroscopicity and swelling behavior of Catalpa bungei earlywood and latewood. Scientia Silvae Sinicae, 2021, 57 (5): 176- 183.
doi: 10.11707/j.1001-7488.20210517 |
|
杨利梅, 刘杏娥, 江泽慧, 等. 单叶省藤材水分吸附特性. 林业科学, 2021, 57 (7): 150- 157. | |
Yang L M, Liu X E, Jiang Z H, et al. Water adsorption characteristics of Calamus simplicifolius cane. Scientia Silvae Sinicae, 2021, 57 (7): 150- 157. | |
Broda M, Spear M J, Curling S F, et al. Effects of biological and chemical degradation on the properties of Scots pine: Part II: wood-moisture relations and viscoelastic behaviour. Forests, 2022, 13 (9): 1390.
doi: 10.3390/f13091390 |
|
Chomcharn A, Skaar C. Dynamic sorption and hygroexpansion of wood wafers exposed to sinusoidally varying humidity. Wood Science and Technology, 1983, 17 (4): 259- 277.
doi: 10.1007/BF00349914 |
|
Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 2013, 47 (1): 141- 161.
doi: 10.1007/s00226-012-0514-7 |
|
García Esteban L, Gril J, de Palacios de Palacios P, et al. Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Annals of Forest Science, 2005, 62 (3): 275- 284.
doi: 10.1051/forest:2005020 |
|
Hill C A S, Ramsay J, Keating B, et al. The water vapour sorption properties of thermally modified and densified wood. Journal of Materials Science, 2012, 47 (7): 3191- 3197.
doi: 10.1007/s10853-011-6154-8 |
|
Hill C A S, Ramsay J, Laine K, et al. Water vapour sorption behaviour of thermally modified wood. International Wood Products Journal, 2013, 4 (3): 191- 196.
doi: 10.1179/2042645313Y.0000000040 |
|
Hou S Y, Wang J Y, Yin F Y, et al. Moisture sorption isotherms and hysteresis of cellulose, hemicelluloses and lignin isolated from birch wood and their effects on wood hygroscopicity. Wood Science and Technology, 2022, 56 (4): 1087- 1102.
doi: 10.1007/s00226-022-01393-y |
|
Källbom S, Rautkari L, Wålinder M, et al. Water vapour sorption characteristics and surface chemical composition of thermally modified spruce (Picea abies Karst). International Wood Products Journal, 2016, 7 (3): 116- 123.
doi: 10.1080/20426445.2016.1160590 |
|
Ma E N, Nakao T, Zhao G J, et al. Dynamic sorption and hygroexpansion of wood subjected to cyclic relative humidity changes. Wood and Fiber Science, 2010, 42 (2): 229- 236. | |
Popescu C M, Hill C A S. The water vapour adsorption-desorption behaviour of naturally aged Tilia cordata Mill. wood. Polymer Degradation and Stability, 2013, 98 (9): 1804- 1813.
doi: 10.1016/j.polymdegradstab.2013.05.021 |
|
Spalt H A. The fundamentals of water vapor sorption by wood. Forest Product Journal, 1958, 8 (10): 288- 295. | |
Time B. Studies on hygroscopic moisture transport in Norway spruce (Picea abies) Part 1: Sorption measurements of spruce exposed to cyclic step changes in relative humidity. Holz Als Roh- Und Werkstoff, 2002a, 60 (4): 271- 276.
doi: 10.1007/s00107-002-0303-3 |
|
Time B. Studies on hygroscopic moisture transport in Norway spruce (Picea abies) Part 2: Modelling of transient moisture transport and hysteresis in wood. Holz Als Roh- Und Werkstoff, 2002b, 60 (6): 405- 410.
doi: 10.1007/s00107-002-0334-9 |
|
Yang T T, Ma E N, Cao J Z. Effects of lignin in wood on moisture sorption and hygroexpansion tested under dynamic conditions. Holzforschung, 2018, 72 (11): 943- 950.
doi: 10.1515/hf-2017-0198 |
|
Yin F Y, Du Y M, Li Z, et al. Water vapor sorption characteristics and hysteresis of earlywood and latewood within the same growth ring of Catalpa bungei. Wood Science and Technology, 2023, 57 (2): 507- 521.
doi: 10.1007/s00226-023-01457-7 |
|
Yuan J, Chen Q, Fei B H. Investigation of the water vapor sorption behavior of bamboo fibers with different sizes. European Journal of Wood and Wood Products, 2021, 79 (5): 1131- 1139.
doi: 10.1007/s00107-020-01652-4 |
|
Zauer M, Pfriem A, Wagenführ A. Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry. Wood Science and Technology, 2013, 47 (6): 1197- 1211.
doi: 10.1007/s00226-013-0568-1 |
|
Zhang X X, Li J, Yu Y, et al. Investigating the water vapor sorption behavior of bamboo with two sorption models. Journal of Materials Science, 2018, 53 (11): 8241- 8249.
doi: 10.1007/s10853-018-2166-y |
[1] | Lü Ziqing, Duan Aiguo. Biomass and Carbon Storage Model of Cunninghamia lanceolata in Different Production Areas [J]. Scientia Silvae Sinicae, 2024, 60(2): 1-11. |
[2] | Xiaoyan Li,Aiguo Duan,Jianguo Zhang. Effects of Initial Planting Density on Dominant Height Growth of Chinese Fir (Cunninghamia lanceolata) Plantation in Different Distribution Areas [J]. Scientia Silvae Sinicae, 2023, 59(8): 22-29. |
[3] | Yancheng Qu,Yihang Jiang,Yanyan Jiang,Jianguo Zhang,Anli Luo,Xiongqing Zhang. Tree Leaf Biomass Models of Chinese fir Plantations Based on Sapwood Area and Diameter at Breast Height and Diameter at Crown Base [J]. Scientia Silvae Sinicae, 2023, 59(7): 106-114. |
[4] | Jiaqi Chen,Guangyu Zhao,Yanglong Li,Yuhong Dong,Lingyu Hou,Ruzhen Jiao. Age Changes of Soil Phosphorus Form and Content in Chinese Fir Plantations [J]. Scientia Silvae Sinicae, 2022, 58(5): 10-17. |
[5] | Yuedong Shi,Hong Zheng,Daiquan Ye,Jisen Shi,Liming Bian. Spatial and Competition Effects for Growth Traits of Chinese Fir and Their Impacts on Estimations of Genetic Parameters [J]. Scientia Silvae Sinicae, 2022, 58(5): 75-84. |
[6] | Shuzhen Wang,Jingjing Liang,Mingzhuo Bao,Fei Pan,Chuifan Zhou. Variation of Soil Phosphorus Fractions and the Phosphorus Solubilizing Microbial Communities in Chinese Fir Monoculture Plantations with Different Ages [J]. Scientia Silvae Sinicae, 2022, 58(2): 58-69. |
[7] | Min Chen,Huayan Lai,Shanshan Zheng,Ming Li,Xiangqing Ma,Pengfei Wu. Effects of Exogenous Ethylene on Growth and Phosphorus Use Efficiency of Chinese Fir Seedlings under Phosphorus Stress [J]. Scientia Silvae Sinicae, 2021, 57(7): 43-50. |
[8] | Limei Yang,Xing Liu,Zehui Jiang,Genlin Tian,Shumin Yang,Lili Shang. Water Adsorption Characteristics of Calamus simplicifolius Cane [J]. Scientia Silvae Sinicae, 2021, 57(7): 150-157. |
[9] | Ru Jia,Haiyan Sun,Yurong Wang,Rui Wang,Rongjun Zhao,Haiqing Ren. Relativity of Microstructures and Mechanical Properties of Juvenile Woods of 10-Year-Old New Chinese Fir Clones 'Yang 020' and 'Yang 061' [J]. Scientia Silvae Sinicae, 2021, 57(5): 165-175. |
[10] | Hao Zang,Hongsheng Liu,Jincheng Huang,Zudong Zhang,Xunzhi Ouyang,Jinkui Ning. Effects of Competition, Climate Factors and Their Interactions on Diameter Growth for Chinese Fir Plantations [J]. Scientia Silvae Sinicae, 2021, 57(3): 39-50. |
[11] | Hui Peng,Jiali Jiang,Jianxiong Lü,Rongjun Zhao,Jinzhen Cao. Time-Temperature Superposition in Chinese Fir Orthotropic Creep Response [J]. Scientia Silvae Sinicae, 2021, 57(1): 153-160. |
[12] | Yihui Wei,Jiaqi Chen,Guangyu Zhao,Yuhong Dong,Lingyu Hou,Ruzhen Jiao. Screening of Phosphate Solubilizing Bacteria from Soil and Endogenous Environment of Chinese Fir Seedlings and Their Characterization of Phosphate Solubilization [J]. Scientia Silvae Sinicae, 2020, 56(12): 1-9. |
[13] | Jinghui Jiang,Fan Zhou,Yongdong Zhou,Botao Li,Zongying Fu,Zhentai Han,Xin Gao. Effects of High Temperature Drying on Formaldehyde Releases of Chinese Fir and Radiata Pine Lumber [J]. Scientia Silvae Sinicae, 2020, 56(12): 130-135. |
[14] | Yifan Chen,Xiaoli Fu,Huimin Wang,Xiaoqin Dai,Liang Kou,Fusheng Chen,Wensheng Bu. Effects of Understory Removal on Growth Rate of Middle-Aged Chinese Fir with Different DBH Classes [J]. Scientia Silvae Sinicae, 2020, 56(11): 21-30. |
[15] | Feibin Wang,Xinmeng Wang,Shuming Yang,Guichao Jiang,Zeli Que,Haibin Zhou. Effect of Different Laminate Thickness on Mechanical Properties of Cross-Laminated Timber Made from Chinese Fir [J]. Scientia Silvae Sinicae, 2020, 56(11): 168-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||