Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (4): 109-118.doi: 10.11707/j.1001-7488.LYKX20220436
Previous Articles Next Articles
Received:
2022-06-27
Online:
2024-04-25
Published:
2024-05-23
Contact:
Sujuan Guo
E-mail:2253601192@qq.com
CLC Number:
Chenglin Liu,Sujuan Guo. Suitability Analysis and Distribution Prediction of Castanea mollissima under Climate Change[J]. Scientia Silvae Sinicae, 2024, 60(4): 109-118.
Table 1
Environment variables data"
环境因子类型 Environmental factor type | 环境因子 Environmental factor | 单位 Unit | 变量代称 Code name |
生物气候因子 Bioclimatic factor | 年均温度 Annual mean temperature | ℃ | Bio1 |
平均温度日较差 Mean diurnal range | ℃ | Bio2 | |
等温性 Isothermality | % | Bio3 | |
温度变化方差 Temperature seasonality | % | Bio4 | |
最热月极端高温Max temperature of warmest month | ℃ | Bio5※ | |
最冷月极端低温Min temperature of coldest month | ℃ | Bio6※ | |
年温变化范围Temperature annual range | ℃ | Bio7※ | |
最湿季平均温 Mean temperature of wettest quarter | ℃ | Bio8 | |
最干季平均温 Mean temperature of driest quarter | ℃ | Bio9 | |
最暖季平均温 Mean temperature of warmest quarter | ℃ | Bio10 | |
最冷季平均温 Mean temperature of coldest quarter | ℃ | Bio11 | |
年均降水量Annual precipitation | mm | Bio12※ | |
最湿月降水量Precipitation of wettest month | mm | Bio13※ | |
最干月降水量Precipitation of driest month | mm | Bio14※ | |
降水量变化方差 Precipitation seasonality | % | Bio15 | |
最湿季降水量Precipitation of wettest quarter | mm | Bio16※ | |
最干季降水量 Precipitation of driest quarter | mm | Bio17 | |
最暖季平均降水量 Precipitation of warmest quarter | mm | Bio18 | |
最冷季平均降水量 Precipitation of coldest quarterm | mm | Bio19 | |
地形因子 Terrrain factor | 海拔Elevation | m | Elevation※ |
坡度Slope | ° | Slope※ |
Table 2
species distribution models in biomod2"
物种分布模型Species distribution models | 简称Model code |
最大熵模型 Maxiumu entropy | MaxEnt |
广义线性模型 Generalized linear model | GLM |
广义相加模型 Generalized add model | GAM |
分类回归树分析 Classification tree analysis | CTA |
人工神经网络 Artificial neural network | ANN |
柔性判别分析 Flexible discriminant analysis | FDA |
助推法 Generalized bossting model | GBM |
表面分室模型 Surface range envelope | SRE |
多元自适应回归样条模型 Multiple adaptive regression splines | MARS |
随机森林 Random forest | RF |
Table 4
Proportion of suitability zoning area of C. mollissima under different climatic conditions (%)"
时期 Period | 区域面积占比Proportion of regional area | |||
总适宜区 Plantable area | 低适宜区 Low suitable area | 中适宜区 Median suitable area | 高适宜区 High suitable area | |
末次冰盛期 Last glacial maximum | 23.22 | 2.82 | 7.28 | 13.10 |
全新世中期 Mid-holocene | 26.58 | 5.43 | 11.22 | 9.94 |
当前 Comtemporary | 25.34 | 4.57 | 9.73 | 11.03 |
SSP1-2.6 2030s | 24.36 | 6.68 | 12.94 | 4.74 |
SSP1-2.6 2050s | 25.49 | 7.16 | 14.11 | 4.23 |
SSP5-8.5 2030s | 24.48 | 6.77 | 11.90 | 5.81 |
SSP5-8.5 2050s | 27.01 | 7.63 | 15.72 | 3.66 |
高 瑜, 李佳颖, 刘宇哲, 等. 基于组合模型的丹参潜在地理分布研究. 植物科学学报, 2021, 39 (6): 571- 579. | |
Gao Y, Li J Y, Liu Y Z, et al. Potential geographical distribution of Salvia miltiorrhiza Bunge based on ensemble model. Plant Science Journal, 2021, 39 (6): 571- 579. | |
郭文利, 王志华, 赵新平, 等. 北京地区优质板栗细网格农业气候区划. 应用气象学报, 2004, 15 (3): 382- 384. | |
Guo W L, Wang Z H, Zhao X P, et al. Fine-grid agroclimatic division of high-quality chestnut in Beijing area. Journal of Applied Meteorological Science, 2004, 15 (3): 382- 384. | |
韩振宇, 高学杰, 徐 影. 多区域模式集合的东亚陆地区域的平均和极端降水未来预估. 地球物理学报, 2021, 64 (6): 1869- 1884. | |
Han Z Y, Gao X J, Xu Y. Mean and extreme precipitation projection over land area of East Asia based on multiple regional climate models. Chinese Journal of Geophysics, 2021, 64 (6): 1869- 1884. | |
何 馨, 马文旭, 赵天田, 等. 气候变化下濒危树种华榛的潜在适宜区预测. 林业科学研究, 2022, 35 (1): 104- 114. | |
He X, Ma W X, Zhao T T, et al. Prediction of potential distribution of endangered species Corylus chinensis franch. in climate change context. Forest Research, 2022, 35 (1): 104- 114. | |
何远政, 黄文达, 赵 昕, 等. 气候变化对植物多样性的影响研究综述. 中国沙漠, 2021, 41 (1): 59- 66. | |
He Y Z, Huang W D, Zhao X, et al. Review on the impact of climate change on plant diversity. Journal of Desert Research, 2021, 41 (1): 59- 66. | |
李 军, 黄敬峰. 山区气温空间分布推算方法评述. 山地学报, 2004, 22 (1): 126- 132. | |
Li J, Huang J F. Review on methods in simulating spatial distribution of temperature in mountains. Journal of Mountain Research, 2004, 22 (1): 126- 132. | |
李随民, 栾文楼, 宋泽峰, 等. 京东板栗生态地球化学环境比配模型与适应性区划. 中国地质, 2011, 38 (6): 1614- 1619. | |
Li S M, Luan W L, Song Z F, et al. Ecogeochemical dosing model and adaptability regionalization of Jingdong chestnut. Geology in China, 2011, 38 (6): 1614- 1619. | |
刘晓彤, 袁 泉, 倪 健. 2019. 中国植物分布模拟研究现状. 植物生态学报. 43(4): 273-283. | |
Liu X T, Yuan Q, Ni J. 2019. Research advances in modelling plant species distribution in China. Chinese Journal of Plant Ecology, 43(4): 273-283.[in Chinese] | |
罗 林, 周应书, 王 敏, 等. 板栗生态适宜性的Fuzzy评价模型. 经济林研究, 2005, 23 (1): 27- 29.. | |
Luo L, Zhou Y S, Wang M, et al. Fuzzy evaluation model of ecological suitability in Chinese chestnut. Non-wood Forest Research, 2005, 23 (1): 27- 29.. | |
苗海霞. 2005. 干旱胁迫下6种经济林树种苗期反应特性的研究. 泰安: 山东农业大学. | |
Miao H X. 2005. Study On Response Characteristics Of Six Economic Tree Species To Drought Stress. MS thesis of Shandong Agricultural University. [in Chinese] | |
亓雪龙, 孙 山, 沈广宁, 等. 基于模糊综合评判法的山东省板栗生态适宜性评价. 果树学报, 2013, 30 (5): 808- 812,905. | |
Qi X L, Sun S, Shen G N, et al. Ecological suitability evaluation of chestnut based on fuzzy comprehensive evaluation in Shandong Province. Journal of Fruit Science, 2013, 30 (5): 808- 812,905. | |
谭凯炎, 闵庆文, 邬定荣. 从土壤气候视角解析农业文化遗产地的自然禀赋: 以宽城传统板栗栽培系统为例. 中国农学通报, 2021, 37 (7): 88- 94. | |
Tan K Y, Min Q W, Wu D R. Analysis of the natural endowment of agricultural cultural heritage sites from the perspective of soil and climate: a case study on Kuancheng traditional chestnut cultivation system. Chinese Agricultural Science Bulletin, 2021, 37 (7): 88- 94. | |
王芳芳, 郭素娟, 廖逸宁, 等. 土壤环境调控对板栗细根形态和产量的影响. 果树学报, 2021, 38 (7): 1123- 1135.. | |
Wang F F, Guo S J, Liao Y N, et al. Effects of interrow grass mulching and fertilization on morphology of fine roots and yield of Chinese chestnut. Journal of Fruit Science, 2021, 38 (7): 1123- 1135.. | |
王军邦, 杨屹涵, 左 婵, 等. 气候变化和人类活动对中国陆地生态系统总初级生产力的影响厘定研究. 生态学报, 2021, 41 (18): 7085- 7099. | |
Wang J B, Yang Y H, Zuo C, et al. Impacts of human activities and climate change on gross primary productivity of the terrestrial ecosystems in China. Acta Ecologica Sinica, 2021, 41 (18): 7085- 7099. | |
王建源, 冯晓云, 薛德强, 等. GIS在泰安市板栗农业气候区划中的应用. 中国农业资源与区划, 2003, 24 (5): 46- 48,52. | |
Wang J Y, Feng X Y, Xue D Q, et al. Application of GIS in regional planning of agro-climate for chestnut in Taian city. Chinese Journal of Agricultural Resources and Regional Planning, 2003, 24 (5): 46- 48,52. | |
王凌梓, 苗峻峰, 韩芙蓉. 近10年中国地区地形对降水影响研究进展. 气象科技, 2018, 46 (1): 64- 75. | |
Wang L Z, Miao J F, Han F R. Overview of impact of topography on precipitation in China over last 10 years. Meteorological Science and Technology, 2018, 46 (1): 64- 75. | |
熊 欢, 郭素娟, 彭晶晶, 等. 树体结构对板栗冠层光照分布和果实产量及品质的影响. 南京林业大学学报(自然科学版), 2014, 38 (2): 68- 74. | |
Xiong H, Guo S J, Peng J J, et al. Effect of tree structure on light distribution and yield and quality of Castanea mollissima Bl. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38 (2): 68- 74. | |
闫 涵, 张云玲, 马松梅, 等. 黑果枸杞在新疆的适宜分布模拟与局部环境适应性分化. 植物生态学报, 2021, 45 (11): 1221- 1230.
doi: 10.17521/cjpe.2021.0179 |
|
Yan H, Zhang Y L, Ma S M, et al. Suitable distribution simulation and local environmental adaptability differentiation of Lycium ruthenicum in Xinjiang, China. Chinese Journal of Plant Ecology, 2021, 45 (11): 1221- 1230.
doi: 10.17521/cjpe.2021.0179 |
|
张宇和, 柳鎏, 梁维坚. 2005. 中国果树志·板栗榛子卷. 北京: 中国林业出版社. | |
Zhang Y H, Liu L, Liang W J. 2005. Chinese Fruit Tree · Chestnut Hazelnut Roll. Beijing: China Forestry Publishing House. [in Chinese] | |
赵泽芳. 2018. 气候变化下物种分布模型建构与模型比较. 西安: 陕西师范大学. | |
Zhao Z F. 2018. Construction and comparison of species distribution models under climate change: a case study of Notopterygium incisum. Xi’an: Shanxi Normal Unniversity. [in Chinese] | |
朱耿平, 刘国卿, 卜文俊, 等. 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 2013, 21 (1): 90- 98.
doi: 10.3724/SP.J.1003.2013.09106 |
|
Zhu G P, Liu G Q, Bu W J, et al. Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 2013, 21 (1): 90- 98.
doi: 10.3724/SP.J.1003.2013.09106 |
|
Carneiro-Carvalho A, Anjos R, Lousada J, et al. Ecophysiological study of SiK impact on Castanea sativa Mill. tolerance to drought stress. Photosynthetica, 2020, 58 (5): 1078- 1089.
doi: 10.32615/ps.2020.030 |
|
Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 2009, 29 (1): 185- 212.
doi: 10.1051/agro:2008021 |
|
Freitas T R, Santos J A, Silva A P, et al. Influence of climate change on chestnut trees: A Review. Plants, 2021, 10 (7): 1463.
doi: 10.3390/plants10071463 |
|
Griscom H P, Griscom B W. 2012. Evaluating the ecological niche of American chestnut for optimal hybrid seedling reintroduction sites in the Appalachian ridge and valley Province. New Forests, 43(4): 441–455. | |
Gurney K M, Schaberg P G, Hawley G J, et al. Inadequate cold tolerance as a possible limitation to American chestnut restoration in the Northeastern United States. Restoration Ecology, 2011, 19 (1): 55- 63.
doi: 10.1111/j.1526-100X.2009.00544.x |
|
Jiang D B, Yu G, Zhao P, et al. 2015. Paleoclimate modeling in China: a review. Advances in Atmospheric Sciences, 32(2): 250–275. | |
Joesting H M, McCarthy B C, Brown K J. The photosynthetic response of American chestnut seedlings to differing light conditions. Canadian Journal of Forest Research, 2007, 37 (9): 1714- 1722.
doi: 10.1139/X07-039 |
|
Lennon J J. Potential impacts of climate change on agriculture and food safety within the island of Ireland. Trends in Food Science & Technology, 2015, 44 (1): 1- 10. | |
Massantini R, Moscetti R, Frangipane M T. Evaluating progress of chestnut quality: a review of recent developments. Trends in Food Science & Technology, 2021, 113, 245- 254. | |
McKinney M. Impacts of global warming, habitat loss, and homogenization on global biodiversity. Evolutionary Ecology Research, 2014, 16 (3): 285- 289. | |
McMahon S M, Harrison S P, Armbruster W S, et al. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology & Evolution, 2011, 26 (5): 249- 259. | |
Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36 (10): 1058- 1069.
doi: 10.1111/j.1600-0587.2013.07872.x |
|
Morales N S, Fernández I C, Baca-González V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ, 2017, 5, e3093.
doi: 10.7717/peerj.3093 |
|
Piao S L, Liu Q, Chen A P, et al. Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 2019, 25 (6): 1922- 1940.
doi: 10.1111/gcb.14619 |
|
Ray D, Marchi M, Rattey A, et al. A multi-data ensemble approach for predicting woodland type distribution: oak woodland in Britain. Ecology and Evolution, 2021, 11 (14): 9423- 9434.
doi: 10.1002/ece3.7752 |
|
Saielli T M, Schaberg P G, Hawley G J, et al. Nut cold hardiness as a factor influencing the restoration of American chestnut in northern latitudes and high elevations. Canadian Journal of Forest Research, 2012, 42 (5): 849- 857.
doi: 10.1139/x2012-033 |
|
Wernberg T, Smale D A, Tuya F, et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 2013, 3 (1): 78- 82.
doi: 10.1038/nclimate1627 |
|
Wu T W, Lu Y X, Fang Y J, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development, 2019, 12 (4): 1573- 1600.
doi: 10.5194/gmd-12-1573-2019 |
|
Yang F, Q Liu, S Y Pan, et al. Chemical composition and quality traits of Chinese chestnuts (Castanea mollissima) produced in different ecological regions. Food Bioscience, 2015, 11, 33- 42.
doi: 10.1016/j.fbio.2015.04.004 |
|
Yu D J, Lee H J. 2020. Evaluation of freezing injury in temperate fruit trees. Horticulture, Environment, and Biotechnology, 61(5): 787–794. [LinkOut] | |
Zhao J B, Du C J, Ma C M, et al. Response of photosynthesis and carbon/nitrogen metabolism to drought stress in Chinese chestnut 'Yanshanzaofeng' seedlings. The Journal of Applied Ecology, 2020, 31 (11): 3674- 3680. |
[1] | Tongtong Li,Sujuan Guo,Yanhua Li. Identification of Chestnut Varieties Based on Digital Analysis of Leaf Morphology [J]. Scientia Silvae Sinicae, 2023, 59(3): 115-126. |
[2] | Wang Jingru, Wang Minghao, Zhang Xiaowei, Sun Shan, Zhao Changming. The Ecological Divergence and Projection of Future Potential Distribution of Homoploid Hybrid Species Picea purpurea [J]. Scientia Silvae Sinicae, 2018, 54(6): 63-72. |
[3] | Liu Huiliang, Zhang Lingwei, Zhang Hongxiang, Buhailiqiemu Abudureheman, Zhang Daoyuan, Guan Kaiyun. Distribution Pattern of Species Richness for Wild Fruit Trees in Xinjiang Based on Species Distribution Modeling [J]. Scientia Silvae Sinicae, 2015, 51(12): 1-8. |
[4] | Li Ying, Wang Guangpeng, Zhang Shuhang, Liu Qingxiang, Li Haishan. A New Variety of Castanea mollissima 'Mingfeng 2' [J]. Scientia Silvae Sinicae, 2015, 51(11): 145-145. |
[5] | Yan Hanbing, Peng Litan, Tang Xuqing. Modeling and Impact Analysis on Distribution Prediction of Forest Tree Species in Northeast China Based on Climate Change [J]. Scientia Silvae Sinicae, 2014, 50(5): 132-139. |
[6] | Chen Xinmei;Lei Yuancai;Zhang Xiongqing;Jia Hongyan. Effects of Sample Sizes on Accuracy and Stability of Maximum Entropy Model in Predicting Species Distribution [J]. Scientia Silvae Sinicae, 2012, 48(1): 53-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||