Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (9): 48-58.doi: 10.11707/j.1001-7488.LYKX20230763
• Research papers • Previous Articles
Xiaoyan Yu1,2,3,Yaxian Gao1,2,3,Guangpu Wei1,*(),Shuyu Zhang1,Wenjun Zhang1,2,3
Received:
2024-12-05
Online:
2025-09-25
Published:
2025-10-10
Contact:
Guangpu Wei
E-mail:Wei_Guangpu@imust.edu.cn
CLC Number:
Xiaoyan Yu,Yaxian Gao,Guangpu Wei,Shuyu Zhang,Wenjun Zhang. Spatio-temporal Pattern of Vegetation Resilience and Its Response to Extreme Climate in Inner Mongolia Autonomous Region[J]. Scientia Silvae Sinicae, 2025, 61(9): 48-58.
Table 1
Eco-geographical region system of Inner Mongolia"
温度带 Temperature zone | 干湿地区 Dry and wet area | 自然区 Natural area | 主要植被 Primary vegetation |
I 寒温带 Cold temperate zone | A 湿润区 Humid zone | IA1 大兴安岭北段山地落叶针叶林区 Mountainous deciduous-coniferous forest area in the northern part of the Daxing'anling Mountains | 针叶林、湿地 Coniferous forest, wetlands |
II 中温带 Medium temperate zone | A 湿润区 Humid zone | IIA3 松辽平原东部山前台地针阔叶混交林区 Mixed coniferous and broad-leaved forests in the mountain front terrace of the eastern Songliao Plain | 针阔混交林、湿地 Mixed coniferous forests, wetlands |
B 半湿润区 Sub-humid zone | IIB1 松辽平原中部森林草原区 Forest-steppe zone in the central Songliao Plain | 典型草原 Typical grassland | |
IIB2 大兴安岭中段山地草原森林区 Mountain steppe forest area in the middle part of the Daxingan Mountains | 阔叶林、草甸 Broad-leaved forests, meadows | ||
IIB3 大兴安岭北段西侧森林草原区 Forest-steppe zone on the western side of the northern section of the Daxinganling Mountains | 草甸草原、草甸 Meadow grasslands, meadows | ||
C 半干旱区 Semi-arid zone | IIC1 西辽河平原草原区 West Liaohe Plain Grassland Area | 典型草原 Typical grassland | |
IIC2 大兴安岭南端草原区 Grassland area at the southern end of the Daxing'anling Mountains | 典型草原、灌丛 Typical grassland, undergrowth | ||
IIC3 内蒙古东部草原区 Eastern Steppe Zone of Inner Mongolia | 典型草原 Typical grassland | ||
IIC4 呼伦贝尔平原草原区 Hulunbuir Plain grassland area | 典型草原、草甸 Typical grassland, meadows | ||
D 干旱区 Arid zone | IID1 鄂尔多斯及内蒙古高原西部荒漠草原区 The desert grassland areas of the western part of the Ordos Plateau anf the Inner Mongolian Plateau | 荒漠草原、荒漠 Desert grasslands, deserts | |
IID2 阿拉善与河西走廊荒漠区 Alxa and the Hexi Corridor Desert Region | 荒漠、荒漠草原 Desert grasslands, deserts | ||
III 暖温带 Warm temperate zone | B 半湿润区 Sub-humid zone | IIIB3 华北山地落叶阔叶林区 North China mountainous deciduous broad-leaved forest area | 典型草原 Typical grassland |
Table 2
Definitions of extreme climate indices"
类别Category | 代码ID | 名称Name | 定义Defination | 单位Unit |
极端气温强度指数 Extreme temperature intensity indcies | TXn | 日最高气温极小值 Minimum daily maximum temperature | 每月中每日最大温度的最小值 Minimum value of daily maximum temperature per month | ℃ |
TXx | 日最高气温极大值 Maximum daily maximum temperature | 每月中每日最大温度的最大值 Maximum value of daily maximum temperature per month | ℃ | |
TNn | 日最低气温极小值 Minimum daily minimum temperature | 每月中每日最小温度的最小值 Minimum value of daily minimum temperature per month | ℃ | |
TNx | 日最低气温极大值 Maximum daily minimum temperature | 每月中每日最小温度的最大值 Maximum value of daily minimum temperature per month | ℃ | |
极端气温频率指数 Extreme temperature frequency indcies | TX90p | 暖昼日数 Number of warm days | 日最高气温>90%分位值的日数 Number of days with daily maximum temperature >90% quantile | d |
TN90p | 暖夜日数 Number of warm nights | 日最低气温>90%分位值的日数 Number of days with daily minimum temperature >90% quantile | d | |
TX10p | 冷昼日数 Number of cold days | 日最高气温<10%分位值的日数 Number of days with daily maximum temperature <10% quantile | d | |
TN10p | 冷夜日数 Number of cold nights | 日最低气温<10%分位值的日数 Number of days with daily minimum temperatures <10% quantile | d | |
极端降水强度指数 Extreme perciptation intensity indcies | RX1day | 1日最大降水 Monthly maximum daily precipitation for 1 day | 每月日降水量最大值 Maximum daily precipitation per month | mm |
RX5day | 5日最大降水 Monthly maximum daily precipitation for 5 day | 每月连续5日降水量最大值 Maximum precipitation for 5 consecutive days per month | mm | |
SDII | 雨日平均降水 Average precipitation on rainy days | 每月雨天平均降水量 Average rainy day precipitation per month | mm·d?1 | |
极端降水频率指数 Extreme frequency intensity indcies | R10mm | 中雨日数 Number of days with moderate rain | 每月日降水≥10mm天数 Number of days with daily precipitation ≥10mm per month | d |
R20mm | 大雨日数 Number of days of heavy rain | 每月日降水≥20mm天数 Number of days with daily precipitation ≥20mm per month | d | |
极端降水持续时间 Extreme preciptation duration indices | CDD | 持续干燥日数 Number of sustained dry days | 每月日降水<1mm的最长连续日数 Maximum number of consecutive days with daily precipitation <1mm per month | d |
CWD | 持续湿润日数 Number of sustained wet days | 每月日降水≥1mm的最长连续日数 Maximum number of consecutive days with daily precipitation ≥1mm per month | d |
Table 3
Spatial pattern and correlation of changes in vegetation coverage and resilience from 2004 to 2023"
类别Category | tau值tau value | 趋势Trend | 区域占比Area proportion(%) | 主要分布地区Main distribution areas |
kNDVI Kendall tau | tau<0.5 | 显著下降 Significantly decline | 3.84 | IID2 |
0.5<tau<0 | 轻微下降Slightly decline | 10.53 | IA1、IIB2、IID2 | |
0<tau<0.5 | 轻微上升 Slightly increase | 33.57 | IIA3、IIC3、IIC4、 | |
0.5<tau | 显著上升 Significantly increase | 52.06 | IIB1、IIB3、IIC1、IIC2、IIC3、IID1、IIIB3 | |
AR(1) Kendall tau | τtau<0.5 | 显著下降 Significantly decline | 16.35 | IIC2、IIC3 |
0.5<tau<0 | 轻微下降 Slightly decline | 41.11 | IIA3、IIB1、IIC1、IIC2、IIC3 | |
0<tau<0.5 | 轻微上升 Slightly increase | 33.21 | IA1、IIB2、IIC3、IIC4、IID1、IID2 | |
0.5<tau | 显著上升 Significantly increase | 9.34 | IIC4、IID2、IIIB3 |
Table 4
Correlation between extreme temperature indices and vegetation resilience"
极端气温指数 Extreme temperature index | 相关系数 Correlation coefficient | 面积占比 Area proportion(%) | 主要分布地区 Main distribution areas |
TNn | ?1<r≤?0.5 | 31.85 | IA1、IIC3、IID1、IID2 |
?0.5<r≤0 | 33.29 | IA1、IIC3、IIC4、IID1、IIIB3 | |
0<r≤0.5 | 23.91 | IIA3、IIB1、IIB3、IIC2 | |
0.5<r≤1 | 10.95 | IIB2、IIC2 | |
TNx | ?1<r≤?0.5 | 32.26 | IIB1、IIC1、IIC2、IIC3 |
?0.5<r≤0 | 27.22 | IA1、IIA3 | |
0<r≤0.5 | 23.57 | IIB2、IIC4、IID1 | |
0.5<r≤1 | 16.95 | IID2 | |
TN10p | ?1<r≤?0.5 | 14.07 | IID2 |
?0.5<r≤0 | 26.78 | IIA3、IIB2、IIB3、IIC4 | |
0<r≤0.5 | 29.39 | IA1、IID1 | |
0.5<r≤1 | 29.76 | IIC1、IIC2、IIC3 | |
TN90p | ?1<r≤?0.5 | 29.97 | IIC2、IIC3、IID1 |
?0.5<r≤0 | 28.93 | IA1、IIA3、IIB1、IIC3、IID1 | |
0<r≤0.5 | 23.19 | IIB2、IIC4、IID1 | |
0.5<r≤1 | 17.91 | IID2 | |
TXn | ?1<r≤?0.5 | 33.57 | IA1、IIA3、IIC3 |
?0.5<r≤0 | 32.73 | IIB1、IID1、IID2、IIIB3 | |
0<r≤0.5 | 22.73 | IIC2、IIC4 | |
0.5<r≤1 | 10.97 | IIB2、IIB3、IIC3 | |
TXx | ?1<r≤?0.5 | 37.92 | IIA3、IIC1、IIC2 |
?0.5<r≤0 | 28.20 | IA1、IIB1、IIC1、IIC3、IIIB3 | |
0<r≤0.5 | 18.51 | IIB2、IIB3、IIC4 | |
0.5<r≤1 | 15.37 | IIB2、IID2 | |
TX10p | ?1<r≤?0.5 | 11.81 | IIB3、IIC4 |
?0.5<r≤0 | 22.54 | IIB2、IID2、IIIB3 | |
0<r≤0.5 | 34.01 | IA1、IIB1、IID1 | |
0.5<r≤1 | 31.64 | IIA3、IIC1、IIC2、IIC3 | |
TX90p | ?1<r≤?0.5 | 36.90 | IA1、IIA3、IIC1、IIC2、IIC3 |
?0.5<r≤0 | 31.77 | IIB1、IID1、IID2、IIIB3 | |
0<r≤0.5 | 21.15 | IIC4 | |
0.5<r≤1 | 10.18 | IIB2、IIB3 |
Table 5
Correlation between extreme precipitation indices and vegetation resilience"
极端降水指数 Extreme precipitation index | 相关系数 Correlation coefficient | 面积占比 Area proportion(%) | 主要分布地区 Main distribution areas |
CDD | ?1<r≤?0.5 | 14.45 | IID2 |
?0.5<r≤0 | 25.93 | IIB1、IIB3、IIC4、IID1、IIIB3 | |
0<r≤0.5 | 37.26 | IA1、IIB2、IIC1 | |
0.5<r≤1 | 22.36 | IIC2、IIC3 | |
CWD | ?1<r≤?0.5 | 30.94 | IIA3、IIC2、IIC3、IID1、IIIB3 |
?0.5<r≤0 | 32.65 | IA1、IIB1、IIB2、IIB3、IIC1、IIC4、 | |
0<r≤0.5 | 22.42 | IID2 | |
0.5<r≤1 | 13.99 | IIC3 | |
R10mm | ?1<r≤?0.5 | 29.26 | IIA3、IIB1、IIC1、IIC2、IIC3 |
?0.5<r≤0 | 33.25 | IID2、IIIB3 | |
0<r≤0.5 | 24.53 | IIC3、IIC4、IID1 | |
0.5<r≤1 | 12.96 | IA1、IIC3 | |
R20mm | ?1<r≤?0.5 | 25.91 | IIA3、IIC1 |
?0.5<r≤0 | 34.67 | IA1、IIB1、IIB2、IIC2、IIC3 | |
0<r≤0.5 | 26.64 | IIB3、IID1、IID2、IIIB3、IIC4、IIIB3 | |
0.5<r≤1 | 12.78 | IIC3 | |
RX1day | ?1<r≤?0.5 | 28.68 | IIA3、IIC1、IIC2 |
?0.5<r≤0 | 30.14 | IIB1、IIB2、IIB3、IIC4 | |
0<r≤0.5 | 25.46 | IA1、IIC3、IID1、IID2 | |
0.5<r≤1 | 15.72 | IID1、IIIB3 | |
RX5day | ?1<r≤?0.5 | 28.99 | IIA3、IIB1、IIC1、IIC2 |
?0.5<r≤0 | 33.95 | IIB2、IIB3、IIC4、IIC3、IID2 | |
0<r≤0.5 | 24.25 | IA1、IID1、IID2 | |
0.5<r≤1 | 12.81 | IIC3 | |
SDII | ?1<r≤?0.5 | 25.80 | IIA3 |
?0.5<r≤0 | 32.51 | IIB1、IIC1、IIC2、IID2、IIIB3 | |
0<r≤0.5 | 26.06 | IIB2、IIB3、IIC4、IIC3 | |
0.5<r≤1 | 15.63 | IA1、IID1 |
高 滢, 孙 虎, 徐崟尧, 等. 陕西省植被覆盖时空变化及其对极端气候的响应. 生态学报, 2022, 42 (3): 1- 12. | |
Gao Y, Sun H, Xu Y Y, et al. Temporal and spatial variation of vegetation cover and its response to extreme climate in Shaanxi Province. Acta Ecologica Sinica, 2022, 42 (3): 1- 12. | |
郝家田, 胡云云, 杜一尘, 等. 基于NDVI的2009—2018年黄河流域林草植被覆盖变化. 林业科学, 2022, 58 (3): 10- 19. | |
Hao J T, Hu Y Y, Du Y C, et al. NDVI-Based coverage changes of forest and grass vegetation in Yellow River basin during 2009 to 2018. Scientia Silvae Sinicae, 2022, 58 (3): 10- 19. | |
皇 彦, 宋海清, 胡 琦, 等. 2000-2020年内蒙古NDVI时空动态及其对水热条件的响应. 水土保持研究, 2024, 31 (4): 197- 204, 213. | |
Huang Y, Song H Q, Hu Q, et al. Temporal and spatial dynamics of NDVI in Inner Mongolia from 2000 to 2020 and its response to water-heat conditions. Soil and Water Conservation Research, 2024, 31 (4): 197- 204, 213. | |
江 靖, 迎 春, 宋桂英, 等. 内蒙古极端降水特征及预报. 气候变化研究快报, 2021, 10 (2): 197- 206. | |
Jiang J, Ying C, Song G Y, et al. Characteristics and forecast of extreme precipitation in Inner Mongolia. Climate Change Research Letters, 2021, 10 (2): 197- 206. | |
蒋 帅, 张 黎, 景元书, 等. 1981-2015年中国区域极端气候事件的时空分布特征. 水土保持研究, 2023, 30 (6): 295- 306. | |
Jiang S, Zhang L, Jing Y S, et al. Spatio-temporal distribution characteristics of extreme climate events in China from 1981 to 2015. Soil and Water Conservation Research, 2023, 30 (6): 295- 306. | |
李翠侠, 孙鹏森, 余 振, 等. 西南高山亚高山区植被活动增强对区域蒸散的影响. 林业科学, 2024, 60 (11): 1- 12. | |
Li C X, Sun P S, Yu Z, et al. Impacts ofeEnhanced vegetation activity on regional evapotranspiration in the alpine and subalpine area of southwestern China. Scientia Silvae Sinicae, 2024, 60 (11): 1- 12. | |
苏日罕, 郭恩亮, 王永芳, 等. 1982—2020年内蒙古地区极端气候变化及其对植被的影响. 生态学报, 2023, 43 (1): 419- 431. | |
Su R H, Guo E L, Wang Y F, et al. Extreme climate changes in Inner Mongolia and their impacts on vegetation dynamics during 1982—2020. Acta Ecologica Sinica, 2023, 43 (1): 419- 431. | |
王子昊, 王 冰, 张秋良, 等. 基于KNDVI的大兴安岭生态功能区植被覆盖变化时空特征及驱动力分析. 环境科学, 2025, 46 (5): 3021- 3032. | |
Wang Z H, Wang B, Zhang Q L, et al. Spatial and temporal characteristics and driving force analysis of vegetation cover change in Greater Khingan Mountains ecological functional area based on KNDVI. Environmental Science, 2025, 46 (5): 3021- 3032. | |
吴运力, 张 钰, 田佳榕. 气候变化和人类活动对内蒙古高原不同植被类型NDVI的影响. 中国农业气象, 2023, 44 (12): 1155- 1168. | |
Wu Y L, Zhang Y, Tian J R. Impacts by climate change and human activities on NDVI in different vegetation types across the Inner Mongolia plateau. Chinese Jourmal of Agrometeorology, 2023, 44 (12): 1155- 1168. | |
张 敏, 曹春香, 陈 伟. 基于MODIS NDVI数据的广西植被覆盖时空变化遥感诊断. 林业科学, 2019, 55 (10): 27- 37. | |
Zhang M, Cao C C, Chen W. Remotely sensed diagnosing temporal and spatial variation of vegetation coverage in Guangxi based on MODIS NDVI data. Scientia Silvae Sinicae, 2019, 55 (10): 27- 37. | |
Alexander L V, Zhang X, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 2006, 110 (5): 97- 109. | |
Boulton C A, Lenton T M, Boers N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature Climate Change, 2022, 12, 271- 278. | |
Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7 (9): 74- 87. | |
Dakos V, Carpenter S R, Brock W A, et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE, 2012, 7 (7): 41- 57. | |
Fan X, Hao X, Hao H, et al. Comprehensive assessment indicator of ecosystem resilience in Central Asia. Water, 2021, 13 (2): 124- 137. | |
Feng Y, Su H, Tang Z, et al. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Communications Earth & Environment, 2021, 2 (1): 87- 99. | |
Fischer J, Riechers M, Loos J, et al. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends in ecology & evolution, 2021, 36 (1): 20- 28. | |
Forzieri G, Dakos V, McDowell N G, et al. Emerging signals of declining forest resilience under climate change. Nature, 2022, 608, 534- 539. | |
Guo E, Wang Y, Wang C, et al. NDVI IndicateslLong-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian plateau. Remote Sensing, 2021, 13 (4): 688- 714. | |
Hao L, Wang S, Cui X, et al. Spatiotemporal dynamics of vegetation net primary productivity and its response to climate change in inner Mongolia from 2002 to 2019. Sustainability, 2021, 13 (23): 133- 143. | |
He L, Guo J, Yang W, Jiang Q, et al. Multifaceted responses of vegetation to average and extreme climate change over global drylands. Science of the total environment, 2023, 858, 159- 172. | |
Holling C S. Resilience and stability of ecological systems. Environmental Science, 1973, 4, 1- 23. | |
Hossain M L, Li J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Global Ecology and Conservation, 2021, 30, 17- 38. | |
Kim Y, Kimball J S, Zhang K, et al. Satellite detection of increasing northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sensing of Environment, 2012, 121, 472- 487. | |
Li C, Wang J, Hu R, et al. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecological Indicators, 2018, 89, 101- 109. | |
Ma M, Wang Q, Liu R, et al. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and-accumulation effects. Science of The Total Environment, 2023, 860, 16- 27. | |
Peng S, Piao S, Ciais P, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501 (7465): 88- 92. | |
Piao Z, Li X, Xu H, et al. Threshold of climate extremes that impact vegetation productivity over the Tibetan Plateau. Science China Earth Sciences, 2024, 67 (6): 1967- 1977. | |
Smith T, Boers N. Global vegetation resilience linked to water availability and variability. Nature Communications, 2023, 14 (1): 498- 509. | |
Smith T, Traxl D, Boers N. Empirical evidence for recent global shifts in vegetation resilience. Nature Climate Change, 2022, 12, 477- 484. | |
Tedesco A M, López-Cubillos S, Chazdon R, et al. Beyond ecology: ecosystem restoration as a process for social-ecological transformation. Trends in Ecology & Evolution, 2023, 38 (7): 643- 653. | |
Wang J, Li X, Zhao Y. Geographical detector-based health risk assessment and its application to the HIV epidemic in China. International Journal of Geographical Information Science, 2016, 30 (8): 1725- 1743. | |
Wang L, Hu F, Miao Y, et al. Changes in vegetation dynamics and relations with extreme climate on multiple time scales in Guangxi, China. Remote Sensing, 2022, 14 (9): 13- 27. | |
Wang Z, Fu B, Wu X, et al. Vegetation resilience does not increase consistently with greening in China’s Loess Plateau. Communications Earth & Environment, 2023, 4 (1): 33- 46. | |
Way D A, Oren R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology, 2010, 30 (6): 669- 688. | |
Wei Y, Yu M, Wei J, et al. Impacts of extreme climates on vegetation at middle-to-high latitudes in Asia. Remote Sensing, 2023, 15 (5): 125- 138. | |
Yang H, Yao L, Wang Y, et al. Relative contribution of climate change and human activities to vegetation degradation and restoration in North Xinjiang, China. The Rangeland Journal, 2017, 39 (3): 289- 302. | |
Yin H, Pflugmacher D, Li A, et al. Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs. Remote Sensing of Environment, 2018, 204, 918- 930. | |
Zhao W, Liu, B. The response of vegetation to extreme precipitation events in arid and semi-arid regions. Environmental Research Letters, 2010, 5 (3): 34- 48. |
[1] | Zeyu Yuan,Hang Xu,Yi Ren,Yang Xu,Jianzhuang Pang,Xiaoyun Wu,Hanyao Zhang,Zhiqiang Zhang. Distribution Characteristics of Vegetation Resilience and its Driving Factors in the Three-North Shelterbelt Forest Program Region from 2001 to 2021 [J]. Scientia Silvae Sinicae, 2025, 61(7): 182-191. |
[2] | Gentana Ge,Lianggaoke Yue,Xiaosong Li,Cuicui Ji,Jianhe Wang,Tong Shen,Tiancan Wang. Estimation of Tree Height in the Grain for Green Program Stands of Inner Mongolia Based on GEDI and Sentinel-2 [J]. Scientia Silvae Sinicae, 2025, 61(3): 16-26. |
[3] | Hou Jianhua;Gao Baojia;Dong Jianxin;Gao Lijie;Liu Yinghua;Li Lanhui. Community Diversity of Arthropod in Forest-Steppe Ecotone in Southeast Edge of Inner Mongolia Tableland [J]. Scientia Silvae Sinicae, 2008, 44(3): 94-101. |
[4] | Wang Yukui;Yan Yanxia;Wang Baoping;Xiao Caihong;Yang Chaowei. Weather Condition Analysis on Dust Events of Ulanbuh Desert [J]. , 2007, 43(zk): 22-27. |
[5] | Wang Hua;Liang Shouhua;Wang Hui;Jia Guixia. Rare and Precious Wild Flower Resources in Inner Mongolia Derset Region and Their Utilization Prospect in Landscape Gardening [J]. Scientia Silvae Sinicae, 2007, 43(3): 59-65. |
[6] | Guosheng Wen,Yunzhang Li. COMPARATIVE EXPERIMENT ON ADAPTABILITY OF SEVERAL INDIGENOUS POPLARS IN INNER MONGOLIA [J]. Scientia Silvae Sinicae, 1996, 32(3): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||