Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 120-130.doi: 10.11707/j.1001-7488.LYKX20230561
• Research papers • Previous Articles Next Articles
Wen Song1,Yongqiang Liu1,Xuening Yao2,zhenping Shi1,Yujie Hang1,hongyan Guo1,*(),Lin Wang1,*(
)
Received:
2023-11-22
Online:
2025-05-20
Published:
2025-05-24
Contact:
hongyan Guo,Lin Wang
E-mail:Ghybjh2004@163.com;lwanger@163.com
CLC Number:
Wen Song,Yongqiang Liu,Xuening Yao,zhenping Shi,Yujie Hang,hongyan Guo,Lin Wang. Effects of Witches’ Broom Disease on Hydraulic Properties and Carbon Metabolism of Jujube Branches and Leaves[J]. Scientia Silvae Sinicae, 2025, 61(5): 120-130.
Table 1
Kmax and P50 of the branches and leaves of each type of jujube tree"
类型Type | 叶leaves | 茎Branches | P50差值 | |||
Kmax / (mmol·m–1s–1 MPa–1) | P50 / MPa | Kmax / (kg·m–1s–1 MPa–1×10?5) | P50 / MPa | P50 leaf-branch / MPa | ||
健康枣树 Healthy Jujube trees | 51.26 | ?1.36 | 5.57±0.62 a | ?1.95 | ?0.59 | |
轻度枣疯病树 Mild diseased Jujube trees | 44.98 | ?1.21 | 3.30±0.58 b | ?1.77 | ?0.56 | |
重度枣疯病 Severe diseased Jujube trees | 36.17 | ?1.04 | 1.08±0.23 c | ?1.33 | ?0.28 |
Table 2
Effects of Witches’ Broom Disease on anatomical traits of jujube branches and leaves water conductive tissues"
测定指标Measurement | 健康枣树 Healthy Jujube trees | 轻度枣疯病 Mild Diseased Jujube trees | 重度枣疯病 Severe Diseased Jujube trees |
单叶面积 Leaf area /mm2 | 725.16±102.21b | 245.44±41.70c | |
比叶质量 LMA /(×10?5g·cm2) | 5.98±0.55c | 6.60±0.77b | 7.68±1.05a |
叶脉导管直径 Leaf vessel diameter /μm | 18.21±2.38a | 13.92±1.98b | 9.08±1.69c |
木材密度 Wood density /(g·cm3) | 0.67±0.03a | 0.65±0.04a | 0.47±0.03b |
枝条导管直径 Branch vessel diameter /μm | 29.41±1.41b | 33.95±0.91a | 13.62±0.72c |
枝条导管密度 Branch vessel density /×10?5mm2 | 11.7±2.57b | 9.16±0.30b | 21.8±2.31a |
枝条导管壁厚度 Branch vessel wall thickness /μm | 4.56±0.76a | 2.49±0.53b | 1.35±0.26c |
枝条导管抗塌陷指数 Branch (t/b)3 /×10?3 | 15.86±0.27a | 7.62±0.91b | 2.84±0.50c |
枝条射线薄壁细胞面积 Area of ray parenchyma cell /μm2 | 209.58±31.66a | 159.71±22.84b | 33.22±6.86c |
枝条轴向薄壁细胞面积 Areas of axial parenchyma cell /μm2 | 75.68±9.83a | 71.06±12.05a | 19.23±4.21b |
纤维细胞面积 Areas of fiber cell /μm2 | 60.69±10.21a | 74.81±12.88a | 27.78±7.14b |
枝条纤维细胞壁厚 Branch fiber cell wall diameter /μm | 1.73±0.40a | 0.97±0.12b | 0.48±0.06c |
枝条导管面积占比 Proportion of vessel area (%) | 8.17±1.36b | 7.88±0.87b | 1.08±0.76a |
枝条薄壁细胞面积占比 Proportion of parenchyma area (%) | 24.99±1.39b | 25.35±1.99b | 39.40±1.92a |
枝条纤维细胞面积占比 Proportion of fiber area (%) | 66.83±1.83a | 66.77±2.64a | 49.51±1.16b |
Fig.2
Effects of Witches’ Broom Disease on the characteristics of branch and leaf ducts of jujube trees 1. Branch of healthy jujube trees; 2. Branch of mild diseased jujube trees; 3. Branch of severe diseased jujube trees; 4. leaves of healthy jujube trees; 5. leaves of mild diseased jujube trees ; 6. Leaves of severe diseased jujube trees. a. Vessels; b. ray parenchyma cells; c. axial parenchyma cells; d. fiber cells; e. leaf vein vessels."
陈玉鑫, 张钰析, 刘锦春, 等. 枣疯病研究进展. 延安大学学报(自然科学版), 2023, 42 (1): 90- 95. | |
Chen Y X, Zhang Y X, Liu J C, et al. Research progress on Jujube Witches’Broom. Journal of Yan’an University(Natural Science Edition), 2023, 42 (1): 90- 95. | |
李金鑫, 张一南, 苗瑞芬, 等. 烂皮病菌侵染对新疆杨光合特性及碳水代谢的影响. 林业科学研究, 2021, 34 (5): 58- 68. | |
Li J X, Zhang Y N, Miao R F, et al. Effects of Valsa sordida infection on photosynthetic characteristics and carbon-water metabolism in Populus alba var. Pyramidalis. Forest Research, 2021, 34 (5): 58- 68. | |
李俊鹏, 李海波, 王 林. 中国沙棘根尖功能特征对坡位和动物啃食枝叶的响应. 生态学报, 2023, 43 (17): 7118- 7127. | |
Li J P, Li H B, Wang L. Response of root tip function characteristics of Hippophae rhamnoides subsp. sinensis Rousi to slope position and herbivores grazing on branches and leaves. Acta Ecologica Sinica, 2023, 43 (17): 7118- 7127. | |
刘孟军, 赵 锦, 周俊义. 枣疯病病情分级体系研究. 河北农业大学学报, 2006, 29 (1): 31- 33.
doi: 10.3969/j.issn.1000-1573.2006.01.009 |
|
Liu M J, Zhao J, Zhou J Y. Grading system of jujube witches’broom symptom. journal of agricultural university of hebei, 2006, 29 (1): 31- 33.
doi: 10.3969/j.issn.1000-1573.2006.01.009 |
|
刘孟军, 赵 锦, 周俊义. 2010. 枣疯病. 北京: 中国农业出版社 . | |
Liu M, Zhao J, Zhou J. 2010. Jujube witches’ broom disease. Beijing: China Agriculture Press. [in Chinese] | |
田国忠, 张志善, 李志清, 等. 我国不同地区枣疯病发生动态和主导因子分析. 林业科学, 2002, 38 (2): 83- 91.
doi: 10.3321/j.issn:1001-7488.2002.02.015 |
|
Tian G Z, Zhang Z S, Li Z Q, et al. Dynamic of jujube Witches' Broom Disease and factors of great influence at ecologically different regions in China. Scientia Silvae Sinicae, 2002, 38 (2): 83- 91.
doi: 10.3321/j.issn:1001-7488.2002.02.015 |
|
王 林, 代永欣, 樊兴路, 等. 风对黄花蒿水力学性状和生长的影响. 生态学报, 2015, 35 (13): 4454- 4461. | |
Wang L, Dai Y X, Fan X L, et al. Effects of wind on hydraulic properties and growth of Artemisia annua Linn. Acta Ecologica Sinica, 2015, 35 (13): 4454- 4461. | |
赵 锦, 刘孟军, 代 丽, 等. 枣疯病病树中内源激素的变化研究. 中国农业科学, 2006, 39 (11): 2255- 2260.
doi: 10.3321/j.issn:0578-1752.2006.11.014 |
|
Zhao J, Liu M J, Dai L, et al. The variations of endogenous hormones in Chinese jujube infected with Witches' Broom Disease. Scientia Agricultura Sinica, 2006, 39 (11): 2255- 2260.
doi: 10.3321/j.issn:0578-1752.2006.11.014 |
|
张丽君, 冯殿齐, 王玉山, 等. 枣疯病病树光合特性的初步研究. 山西农业大学学报(自然科学版), 2010, 30 (2): 129- 132. | |
Zhang L J, Feng D Q, Wang Y S, et al. Preliminary study on the photosynthetic characteristics of jujube Witches' Broom Trees. Journal of Shanxi Agricultural University(Natural Science Edition), 2010, 30 (2): 129- 132. | |
张军周, 勾晓华, 赵志千, 等. 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 2013, 37 (10): 972- 977. | |
Zhang J Z, Gou X H, Zhao Z Q, et al. Improved method of obtaining micro-core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 2013, 37 (10): 972- 977. | |
Aubrey D P, Teskey R O. Stored root carbohydrates can maintain root respiration for extended periods. New Phytologist, 2018, 218 (1): 142- 152.
doi: 10.1111/nph.14972 |
|
Aritsara A N A, Wang S, Li B N, et al. Divergent leaf and fine root “pressure–volume relationships” across habitats with varying water availability. Plant Physiology, 2022, 190 (4): 2246- 2259.
doi: 10.1093/plphys/kiac403 |
|
Bortolami G, Ferrer N, Baumgartner K, et al. Esca grapevine disease involves leaf hydraulic failure and represents a unique premature senescence process. Tree Physiology, 2023, 43 (3): 441- 451.
doi: 10.1093/treephys/tpac133 |
|
Brodribb T J, Holbrook N M. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant physiology, 2003, 132 (4): 2166- 2173.
doi: 10.1104/pp.103.023879 |
|
Brodersen C R, McElrone A J. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Frontiers in plant science, 2013, 4, 108. | |
Chen W, Yao X, Cai K, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological trace element research, 2011, 142 (1): 67- 76.
doi: 10.1007/s12011-010-8742-x |
|
Chen Z, Zhu S, Zhang Y, et al. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree physiology, 2020, 40 (8): 1029- 1042.
doi: 10.1093/treephys/tpaa046 |
|
Chen Z, Wang L, Dai Y, et al. Phenology-dependent variation in the non-structural carbohydrates of broadleaf evergreen species plays an important role in determining tolerance to defoliation (or herbivory). Scientific Reports, 2017, 7 (1): 10125.
doi: 10.1038/s41598-017-09757-2 |
|
Choat B, Cobb A R, Jansen S. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist, 2008, 177 (3): 608- 625.
doi: 10.1111/j.1469-8137.2007.02317.x |
|
Dai Y X, Wang L, Wan X C. Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought. AoB PLANTS, 2018, 10 (1): plx069. | |
De Schepper V, De Swaef T, Bauweraerts I, et al. Phloem transport: a review of mechanisms and controls. Journal of experimental botany, 2013, 64 (16): 4839- 4850.
doi: 10.1093/jxb/ert302 |
|
Furze M E, Trumbore S, Hartmann H. Detours on the phloem sugar highway: stem carbon storage and remobilization. Current Opinion in Plant Biology, 2018, 43, 89- 95.
doi: 10.1016/j.pbi.2018.02.005 |
|
Gururani M A, Mohanta T K, Bae H. Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. International journal of molecular sciences, 2015, 16 (8): 19055- 19085.
doi: 10.3390/ijms160819055 |
|
Hartmann H, Bahn M, Carbone M, et al. Plant carbon allocation in a changing world—challenges and progress: introduction to a virtual issue on carbon allocation. New Phytologist, 2020, 227 (4): 981- 988. | |
Hu Y T, Xiang W H, Schäfer K V R, et al. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of the Total Environment, 2022, 828, 154517. | |
Levionnois S, Ziegler C, Jansen S, et al. Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees. New Phytologist, 2020, 228 (2): 512- 524. | |
Lens F, Sperry J S, Christman M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New phytologist, 2011, 190 (3): 709- 723. | |
Li Z M, Wang C K, Luo D D, et al. Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species. Plant Physiology and Biochemistry, 2023, 197, 107658. | |
Liu Q, Liu Y, Gao L Q, et al. Vessel, intervessel pits and vessel-to-fiber pits have significant impact on hydraulic function under different drought conditions and re-irrigation. Environmental and Experimental Botany, 2023, 214, 105476. | |
Limousin J M, Roussel A, Rodríguez‐Calcerrada J, et al. 2022. Drought acclimation of Quercus ilex leaves improves tolerance to moderate drought but not resistance to severe water stress. Plant, Cell & Environment, 45(7): 1967−1984. | |
Martínez-Vilalta J, Vanderklein D, Mencuccini M. Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L. ). Oecologia, 2007, 150 (4): 529- 544. | |
McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New phytologist, 2008, 178 (4): 719- 739.
doi: 10.1111/j.1469-8137.2008.02436.x |
|
Nardini A, Luglio J. Leaf hydraulic capacity and drought vulnerability: possible trade‐offs and correlations with climate across three major biomes. Functional Ecology, 2014, 28 (4): 810- 818.
doi: 10.1111/1365-2435.12246 |
|
Pereira L, Domingues-Junior A P, Jansen S, et al. Is embolism resistance in plant xylem associated with quantity and characteristics of lignin?. Trees, 2018, 32 (2): 349- 358.
doi: 10.1007/s00468-017-1574-y |
|
Pérez‐Donoso A G, Greve L C, Walton J H, et al. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots. Plant Physiology, 2007, 143 (2): 1024- 1036.
doi: 10.1104/pp.106.087023 |
|
Pérez‐Donoso A G, Lenhof J J, Pinney K, et al. Vessel embolism and tyloses in early stages of Pierce's disease. Australian Journal of Grape and Wine Research, 2016, 22 (1): 81- 86.
doi: 10.1111/ajgw.12178 |
|
Prats K A, Fanton A C, Brodersen C R, et al. Starch depletion in the xylem and phloem ray parenchyma of grapevine stems under drought. AoB PLANTS, 2023, 15 (5): plad062.
doi: 10.1093/aobpla/plad062 |
|
Reynolds A G, Niu L X, De Savigny C. Use of electrical conductivity to assess irrigation impacts on grapevine winter hardiness. International journal of fruit science, 2014, 14 (3): 267- 283.
doi: 10.1080/15538362.2014.898970 |
|
Sala A N, Piper F, Hoch G. Physiological mechanisms of droughtinduced tree mortality are far from being resolved. New Phytologist, 2010, 186 (2): 274- 281.
doi: 10.1111/j.1469-8137.2009.03167.x |
|
Savi T, Bertuzzi S, Branca S, et al. Drought‐induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?. New Phytologist, 2015, 205 (3): 1106- 1116.
doi: 10.1111/nph.13112 |
|
Serra-Maluquer X, Gazol A, Anderegg W R L, et al. Wood density and hydraulic traits influence species’ growth response to drought across biomes. Global Change Biology, 2022, 28 (12): 3871- 3882.
doi: 10.1111/gcb.16123 |
|
Subasinghe Achchige Y M, Volkova L, Drinnan A, et al. A quantitative test for heat-induced cell necrosis in vascular cambium and secondary phloem of Eucalyptus obliqua stems. Journal of Plant Ecology, 2021, 14 (1): 160- 169.
doi: 10.1093/jpe/rtaa081 |
|
Surano A, Abou Kubaa R, Nigro F, et al. Susceptible and resistant olive cultivars show differential physiological response to Xylella fastidiosa infections. Frontiers in Plant Science, 2022, 13, 968934.
doi: 10.3389/fpls.2022.968934 |
|
Sun Q, Sun Y L, Walker M A, et al. Vascular occlusions in grapevines with Pierce's disease make disease symptom development worse. Plant Physiology, 2013, 161 (3): 1529- 1541. | |
Trugman A T, Anderegg L D L, Anderegg W R L, et al. Why is tree drought mortality so hard to predict?. Trends in Ecology & Evolution, 2021, 36 (6): 520- 532. | |
Tyree M T, Zimmermann M H. 2002. Xylem structure and the ascent of sap. Berlin, Heidelberg: Springer Berlin Heidelberg. | |
Vuerich M, Petrussa E, Boscutti F, et al. Contrasting responses of two grapevine cultivars to drought: the role of non-structural carbohydrates in xylem hydraulic recovery. Plant and Cell Physiology, 2023, 64 (8): 920- 932.
doi: 10.1093/pcp/pcad066 |
|
Wang A Y, Han S J, Zhang J H, et al. The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient. Tree physiology, 2018, 38 (12): 1792- 1804.
doi: 10.1093/treephys/tpy119 |
|
Wang L, Li J P, Wang Y, et al. Interactive effect between tree ageing and trunk-boring pest reduces hydraulics and carbon metabolism in Hippophae rhamnoides. AoB PLANTS, 2022, 14 (6): plac051.
doi: 10.1093/aobpla/plac051 |
|
Wortemann R, Herbette S, Barigah T S, et al. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiology, 2011, 31 (11): 1175- 1182.
doi: 10.1093/treephys/tpr101 |
|
Xu H Y, Wang H, Prentice I C, et al. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytologist, 2021, 232 (3): 1286- 1296.
doi: 10.1111/nph.17656 |
|
Ziaco E, Liu X S, Biondi F. Dendroanatomy of xylem hydraulics in two pine species: Efficiency prevails on safety for basal area growth in drought-prone conditions. Dendrochronologia, 2023, 81, 126116.
doi: 10.1016/j.dendro.2023.126116 |
|
Zhang F P, Zhang J L, Brodribb T J, et al. Cavitation resistance of peduncle, petiole and stem is correlated with bordered pit dimensions in Magnolia grandiflora. Plant Diversity, 2021, 43 (4): 324- 330.
doi: 10.1016/j.pld.2020.11.007 |
|
Zhu S D, Liu H, Xu Q Y, et al. Are leaves more vulnerable to cavitation than branches?. Functional Ecology, 2016, 30 (11): 1740- 1744.
doi: 10.1111/1365-2435.12656 |
[1] | Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85. |
[2] | Jiayi Shen,Cuiping Wu,Jia Yao,Jiasheng Wu,Rui Zhang,Yuanyuan Hu. Changes of Anatomic Structure and Cell Wall Metabolism of Torreya grandis cv. ‘Merrilii’ Aril during Cracking [J]. Scientia Silvae Sinicae, 2023, 59(2): 86-95. |
[3] | Wei Wang,Han Zhao,Xin Huang,Zhuoliang Hou,Zaimin Jiang,Jing Cai. Relationship Between Leaf Hydraulic and Economic Traits and Biomass of Poplar Clones [J]. Scientia Silvae Sinicae, 2023, 59(10): 89-98. |
[4] | Dang Wei, Jiang Zaimin, Li Rong, Zhang Shuoxin, Cai Jing. Relationship between Hydraulic Traits and Refilling of Embolism in the Xylem of One-Year-Old Twigs of Six Tree Species [J]. Scientia Silvae Sinicae, 2017, 53(3): 49-59. |
[5] | Wang Lin, Dai Yongxin, Guo Jinping, Gao Runmei, Wan Xianchong. Interaction of Hydraulic Failure and Carbon Starvation on Robinia pseudoacacia Seedlings During Drought [J]. Scientia Silvae Sinicae, 2016, 52(6): 1-9. |
[6] | Cheng Fangyan, Wang Chuankuan. Impacts of Tree Species and Tissue on Estimation of Nonstructural Carbohydrates Storage in Trunk [J]. Scientia Silvae Sinicae, 2016, 52(2): 1-9. |
[7] | Guo Xuemin;Gao Zhongming;Liu Zhenlin;Liang Lisong;Wang Guixi. Comparative Anatomy of Vessel Elements in Staminate and PistillatePlants of Fraxinus pennsylvanica [J]. Scientia Silvae Sinicae, 2010, 46(8): 51-55. |
[8] | Zhou Yongbin;Wu Dongdong;Yu Dapao. Carbon Supply Status in the Betula ermanii in Changbai Mountain [J]. Scientia Silvae Sinicae, 2010, 46(3): 161-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||