Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (10): 154-163.doi: 10.11707/j.1001-7488.LYKX20230086
• Reviews • Previous Articles
Yu Luan,Menghong Jiang,Yuting Yang,Huanrong Liu,Xinxin Ma,Xiubiao Zhang,Fengbo Sun,Benhua Fei,Changhua Fang*
Received:
2023-03-04
Online:
2024-10-25
Published:
2024-11-05
Contact:
Changhua Fang
CLC Number:
Yu Luan,Menghong Jiang,Yuting Yang,Huanrong Liu,Xinxin Ma,Xiubiao Zhang,Fengbo Sun,Benhua Fei,Changhua Fang. Generation Mechanisms of Growth Stress in Trees[J]. Scientia Silvae Sinicae, 2024, 60(10): 154-163.
苌姗姗, 胡进波, Clair Bruno, 等. 氮气吸附法表征杨木应拉木的孔隙结构. 林业科学, 2011, 47 (10): 134- 140.
doi: 10.11707/j.1001-7488.20111021 |
|
Chang S S, Hu J B, Bruno C, et al. Pore structure characterization of poplar tension wood by nitrogen adsorption-desorption method. Scientia Silvae Sinicae, 2011, 47 (10): 134- 140.
doi: 10.11707/j.1001-7488.20111021 |
|
方长华. 2007. 胶质层对杨树应拉木生长应力和木材材性的影响. 合肥: 安徽农业大学. | |
Fang C H. 2007. Contribution of gelatinous layer to tension wood behaviour in poplar: growth stresses and wood material properties. Hefei: Anhui Agricultural University. [in Chinese] | |
胡潇毅, 许丹丹, 柳占立, 等. 树木生长应力与木材开裂. 北京力学会第21届学术年会暨北京振动工程学会第22届学术年会, 2015, Beijing, China,1032- 1034. | |
Hu X Y, Xu D D, Liu Z L, et al. Tree growth stress and wood cracking. The 21st Annual Academic Conference of Beijing Mechanics Society and the 22nd Annual Academic Conference of Beijing Vibration Engineering Society, 2015, Beijing, China,1032- 1034. | |
黄振英. 2004. 马尾松正常木与应压木生长应力及材性的比较研究. 合肥: 安徽农业大学. | |
Huang Z Y. 2004. Comparative study on the growth stresses and the properties of normal wood and compression wood in masson pine. Hefei: Anhui Agricultural University. [in Chinese] | |
李 猛, 陈 迪, 田 康, 等. 不同含水率下木构件起裂荷载试验研究. 森林工程, 2022, 38 (4): 69- 81. | |
Li M, Chen D, Tian K, et al. Experimental study on cracking load of wood members under different moisture content. Forest Engineering, 2022, 38 (4): 69- 81. | |
刘 倩. 2009. 人工授力树干应力木的初步研究. 合肥: 安徽农业大学. | |
Liu Q. 2009. Primary study on the reaction wood of the artificial inclined trunk. Hefei: Anhui Agricultural University. [in Chinese] | |
石 洋, 苌姗姗, 胡进波, 等. 应拉木拉伸应力受胶质层影响及其形成机理研究. 中南林业科技大学学报, 2017, 37 (7): 123- 129. | |
Shi Y, Chang S S, Hu J B, et al. Research on tensile stress affected by gelatinous layer and its generation mechanism in tension wood. Journal of Central South University of Forestry & Technology, 2017, 37 (7): 123- 129. | |
许 威, 曹 军, 花 军, 等. 基于纤维解离高应变率加载对木材动力学特性影响分析. 森林工程, 2023, 39 (6): 88- 94. | |
Xu W, Cao J, Hua J, et al. The influence of high strain rate loading on wood dynamic characteristics based on fiber dissociation. Forest Engineering, 2023, 39 (6): 88- 94. | |
张文标, 李文珠, 阮锡根. 树木的生长应力. 世界林业研究, 2001, 14 (3): 29- 34.
doi: 10.3969/j.issn.1001-4241.2001.03.003 |
|
Zhang W B, Li W Z, Ruan X G. Growth stresses in trees. World Forestry Research, 2001, 14 (3): 29- 34.
doi: 10.3969/j.issn.1001-4241.2001.03.003 |
|
Alméras T, Fournier M. Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. Journal of Theoretical Biology, 2009, 256 (3): 370- 381.
doi: 10.1016/j.jtbi.2008.10.011 |
|
Alméras T, Ghislain B, Clair B, et al. Quantifying the motor power of trees. Trees, 2018, 32 (3): 689- 702.
doi: 10.1007/s00468-018-1662-7 |
|
Alméras T, Yoshida M, Okuyama T. The generation of longitudinal maturation stress in wood is not dependent on diurnal changes in diameter of trunk. Journal of Wood Science, 2006, 52 (5): 452- 455.
doi: 10.1007/s10086-005-0788-6 |
|
Bamber R K. The origin of growth stresses: a rebuttal. IAWA Journal, 1987, 8 (1): 80- 84.
doi: 10.1163/22941932-90001032 |
|
Barry G, John B, Pekka S, et al. 2014. The biology of reaction wood. Springer Berlin, Heidelberg. | |
Bowling A J, Vaughn K C. Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose. American Journal of Botany, 2008, 95 (6): 655- 663.
doi: 10.3732/ajb.2007368 |
|
Boyd J D. Tree growth stresses. 3. The origin of growth stresses. Australian Journal of Scientific Research Series B-Biological Sciences, 1950, 3 (3): 294- 309. | |
Boyd J D. Tree growth stresses: Part V: evidence of an origin in differentiation and lignification. Wood Science and Technology, 1972, 6 (4): 251- 262.
doi: 10.1007/BF00357047 |
|
Boyd J D. 1985. The key factor in growth stress generation in trees lignification or crystallisation? IAWA Journal, 6(2): 139-150. | |
Buchanan A H. Wood properties for engineered timber buildings. New Zealand Journal of Forestry, 2019, 64 (2): 11- 18. | |
Burgert I, Eder M, Gierlinger N, et al. Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta, 2007, 226 (4): 981- 987.
doi: 10.1007/s00425-007-0544-9 |
|
Cassens D L, Serrano J R. 2004. Growth stress in hardwood timber. Proceedings of the 14th Central Hardwood Forest Conference, U. S. Dept. of Agriculture, Forest Service, Northeastern Research Station, 106−115. | |
Chang S S, Quignard F, Alméras T, et al. Mesoporosity changes from cambium to mature tension wood: a new step toward the understanding of maturation stress generation in trees. New Phytologist, 2015, 205 (3): 1277- 1287.
doi: 10.1111/nph.13126 |
|
Chen Q M, Hu Z J, Chang H M, et al. Micro analytical methods for determination of compression wood content in loblolly pine. Journal of Wood Chemistry and Technology, 2007, 27 (3/4): 169- 178. | |
Chen S Y, Matsuo-Ueda M, Yoshida M, et al. Hygrothermal recovery behavior of cellulose-rich gelatinous layer in tension wood studied by viscoelastic vibration measurement. Cellulose, 2021, 28 (9): 5793- 5805.
doi: 10.1007/s10570-021-03877-9 |
|
Clair B, Alméras T, Yamamoto H, et al. Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophysical Journal, 2006, 91 (3): 1128- 1135.
doi: 10.1529/biophysj.105.078485 |
|
Clair B, Déjardin A, Pilate G, et al. 2018. Is the G-layer a tertiary cell wall? Frontiers in Plant Science, 9: 623. | |
Clair B, Ghislain B, Prunier J, et al. Mechanical contribution of secondary phloem to postural control in trees: the bark side of the force. New Phytologist, 2019, 221 (1): 209- 217.
doi: 10.1111/nph.15375 |
|
Clair B, Ruelle J, Thibaut B. Relationship between growth stress, mechanical-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill. ). Holzforschung, 2003, 57 (2): 189- 195.
doi: 10.1515/HF.2003.028 |
|
Clair B, Thibaut B. Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA Journal, 2001, 22 (2): 121- 131.
doi: 10.1163/22941932-90000273 |
|
Clair B. 2001. Etude des propriétés mécaniques et du retrait au séchage du boie à l´échelle de la paroi celluaire: essai de compréhension du comportement macroscopique paradoxal du bois de tension à couche gélatineuse. Sciences du Vivant [q-bio]. ENGREF (AgroParisTech). | |
Cleland R. Cell wall extension. Annual Review of Plant Physiology and Plant Molecular Biology, 1971, 22, 197- 222.
doi: 10.1146/annurev.pp.22.060171.001213 |
|
Cosgrove D J. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. Journal of Experimental Botany, 2016, 67 (2): 463- 476.
doi: 10.1093/jxb/erv511 |
|
Davidson T C, Newman R H, Ryan M J. Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydrate Research, 2004, 339 (18): 2889- 2893.
doi: 10.1016/j.carres.2004.10.005 |
|
Fang C H, Clair B, Gril J, et al. Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood Science and Technology, 2007, 41 (8): 659- 671.
doi: 10.1007/s00226-007-0148-3 |
|
Fang C H, Guibal D, Clair B, et al. Relationships between growth stress and wood properties in poplar I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55). Annals of Forest Science, 2008a, 65 (3): 307.
doi: 10.1051/forest:2008008 |
|
Fang C H, Clair B, Gril J, et al. Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA Journal, 2008b, 29 (3): 237- 246.
doi: 10.1163/22941932-90000183 |
|
Foston M, Hubbell C A, Samuel R, et al. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula × alba as a model substrate for reduced recalcitrance. Energy & Environmental Science, 2011, 4 (12): 4962- 4971. | |
Fournier M, Bordonné P A, Guitard D, et al. Growth stress patterns in tree stems. Wood Science and Technology, 1990, 24 (2): 131- 142. | |
Gao J, Jebrane M, Terziev N, et al. Enzymatic hydrolysis of the gelatinous layer in tension wood of Salix varieties as a measure of accessible cellulose for biofuels. Biotechnology for Biofuels, 2021, 14 (1): 141.
doi: 10.1186/s13068-021-01983-1 |
|
Ghislain B, Clair B. Diversity in the organisation and lignification of tension wood fibre walls: a review. IAWA Journal, 2017, 38 (2): 245- 265.
doi: 10.1163/22941932-20170170 |
|
Ghislain B, Engel J, Clair B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA Journal, 2019, 40 (4): 765- 784.
doi: 10.1163/22941932-40190257 |
|
Gorshkova T, Mokshina N, Chernova T, et al. Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiology, 2015, 169 (3): 2048- 2063. | |
Goswami L, Dunlop J W C, Jungnikl K, et al. Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant Journal, 2008, 56 (4): 531- 538.
doi: 10.1111/j.1365-313X.2008.03617.x |
|
Hung L F, Tsai C C, Chen S J, et al. Study of tension wood in the artificially inclined seedlings of Koelreuteria henryi Dummer and its biomechanical function of negative gravitropism. Trees, 2016, 30 (3): 609- 625.
doi: 10.1007/s00468-015-1304-2 |
|
Kwon M. Tension wood as a model system to explore the carbon partitioning between lignin and cellulose biosynthesis in woody plants. Journal of Applied Biological Chemistry, 2008, 51 (3): 83- 87.
doi: 10.3839/jabc.2008.018 |
|
Liu Y, Long J J, Chen J, et al. Creep behavior of orthogonal rib box floor of poplar laminated veneer lumber. BioResources, 2022, 17 (4): 6158- 6177.
doi: 10.15376/biores.17.4.6158-6177 |
|
Mai C, Schmitt U, Niemz P. A brief overview on the development of wood research. Holzforschung, 2022, 76 (2): 102- 119.
doi: 10.1515/hf-2021-0155 |
|
Mattheck C, Kubler H. 1997. Wood - the internal optimization of trees. Berlin: Heidelberg Springer, 63−89. | |
Mellerowicz E J, Gorshkova T A. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. Journal of Experimental Botany, 2012, 63 (2): 551- 565.
doi: 10.1093/jxb/err339 |
|
Mellerowicz E J, Immerzeel P, Hayashi T. Xyloglucan: the molecular muscle of trees. Annals of Botany, 2008a, 102 (5): 659- 665.
doi: 10.1093/aob/mcn170 |
|
Mellerowicz E J, Sundberg B. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Current Opinion in Plant Biology, 2008b, 11 (3): 293- 300.
doi: 10.1016/j.pbi.2008.03.003 |
|
Moëll M K, Fujita M. Fourier transform methods in image analysis of compression wood at the cellular level. IAWA Journal, 2004, 25 (3): 311- 324.
doi: 10.1163/22941932-90000368 |
|
Müller M, Burghammer M, Sugiyama J. Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung, 2006, 60 (5): 474- 479.
doi: 10.1515/HF.2006.078 |
|
Nezu I, Ishiguri F, Ohshima J, et al. Relationship between the xylem maturation process based on radial variations in wood properties and radial growth increments of stems in a fast-growing tree species, Liriodendron tulipifera. Journal of Wood Science, 2022, 68 (1): 48.
doi: 10.1186/s10086-022-02057-y |
|
Okuyama T, Yamamoto H, Yoshida M, et al. Growth stresses in tension wood: role of microfibrils and lignification. Annales Des Sciences Forestières, 1994, 51 (3): 291- 300. | |
Okuyama T, Yoshida M, Yamamoto H. An estimation of the turgor pressure change as one of the factors of growth stress generation in cell walls-diurnal change of tangential strain of inner bark. Mokuzai Gakkaishi, 1995, 41 (12): 1070- 1078. | |
Okuyama T. Growth stresses in tree. Mokuzai Gakkaishi, 1993, 39 (7): 747- 756. | |
Okuyama T. 1997. Assessment of growth stresses and peripheral strain in standing trees. Conferencia IUFRO sobre silvicultra e melhorament de Eucaliptos. | |
Onaka F. Studies on compression and tension wood. Wood Research Bulletin of the Wood Research Institute Kyoto University, 1949, 24 (3): 1- 88. | |
Purusatama B D, Febrianto F, Lee S H, et al. Hardness and fracture morphology of reaction wood from Pinus merkusii and Agathis loranthifolia. Wood Science and Technology, 2022, 56 (5): 1331- 1351.
doi: 10.1007/s00226-022-01413-x |
|
Roussel J R, Clair B. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress. Tree Physiology, 2015, 35 (12): 1366- 1377.
doi: 10.1093/treephys/tpv082 |
|
Ruel K, Chevalier-Billosta V, Guillemin F, et al. The wood cell wall at the ultrastructural scale - formation and topochemical organization. Maderas Ciencia y Tecnología, 2006, 8 (2): 107- 116. | |
Ruelle J, Yoshida M, Clair B, et al. Peculiar tension wood structure in Laetia procera (Poepp. ) Eichl. (Flacourtiaceae). Trees, 2007a, 21 (3): 345- 355.
doi: 10.1007/s00468-007-0128-0 |
|
Ruelle J, Yamamoto H, Thibaut B. Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species. BioResources, 2007b, 2 (2): 235- 251.
doi: 10.15376/biores.2.2.235-251 |
|
Sedighi-Gilani M, Sunderland H, Navi P. Microfibril angle non-uniformities within normal and compression wood tracheids. Wood Science and Technology, 2005, 39 (6): 419- 430.
doi: 10.1007/s00226-005-0022-0 |
|
Yamamoto H, Abe K, Arakawa Y, et al. Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. Journal of Wood Science, 2005, 51 (3): 222- 233.
doi: 10.1007/s10086-004-0639-x |
|
Yamamoto H, Sujan K C, Matsuo-Ueda M, et al. Microscopic mechanism of contraction of tension wood G-fiber due to boiling. Cellulose, 2022a, 29 (14): 7935- 7954.
doi: 10.1007/s10570-022-04742-z |
|
Yamamoto H, Kojima Y, Okuyama T, et al. Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall. Journal of Biomechanical Engineering, 2002b, 124 (4): 432- 440.
doi: 10.1115/1.1485751 |
|
Yamamoto H. Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Science and Technology, 1998, 32 (3): 171- 182.
doi: 10.1007/BF00704840 |
|
Yamashita S, Yoshida M, Takayama S, et al. Stem-righting mechanism in gymnosperm trees deduced from limitations in compression wood development. Annals of Botany, 2007, 99 (3): 487- 493.
doi: 10.1093/aob/mcl270 |
|
Yoshida M, Hosoo Y, Okuyama T. Periodicity as a factor in the generation of isotropic compressive growth stress between microfibrils in cell wall formation during a twenty-four hour period. Holzforschung, 2000a, 54 (5): 469- 473.
doi: 10.1515/HF.2000.079 |
|
Yoshida M, Okuda T, Okuyama T. Tension wood and growth stress induced by artificial inclination in textit Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Annals of Forest Science, 2000b, 57 (8): 739- 746.
doi: 10.1051/forest:2000156 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||