Welcome to visit Scientia Silvae Sinicae,Today is

Scientia Silvae Sinicae ›› 2015, Vol. 51 ›› Issue (7): 28-36.doi: 10.11707/j.1001-7488.20150704

Previous Articles     Next Articles

Spatial Point Patterns and Associations of Forest Landscapes in Pangu Forest Farm in Daxing'an Mountains

Dong Lingbo, Liu Zhaogang, Li Fengri   

  1. School of Forestry, Northeast Forestry University Harbin 150040
  • Received:2014-03-28 Revised:2014-04-29 Online:2015-07-25 Published:2015-08-14

Abstract:

[Objective] The research of multi-scale spatial distribution pattern and associations of forest landscapes has become a hotspot in landscape ecology. The purpose of this paper was to analyze the spatial distribution pattern and associations of the main forest landscapes in Daxing'an Mountains, which can contribute to clarify the formation and maintenance mechanism of forest landscapes in this area and also can provide some insights for healthy management of the forest landscapes. [Method] Based on the data of forest resource inventory in Pangu forest farm in Daxing'an Mountains in northeastern China, the spatial distribution pattern and associations of the main forest landscape types (natural Larix gmelinii forest, natural Betula platyphylla forest, natural coniferous mixed forest and natural mixed broadleaf-conifer forest) were characterized by using the O-ring statistics within Programita software and kernel density function within ArcMap software. [Result] The result of kernel density function indicated that the mean patch density for each forest type were 0.73-1.57 km-2, and the spatial variation coefficient were up to 99.75%-119.67%, which both illustrated the distribution of the four forest landscapes were significantly clumped in spatial dimensions. The O-ring statistics showed that the main forest landscape types were significantly clumped at small scale, and tended to be in random distribution with the increase of scale. Spatial associations showed that there were negative correlations at small scale, non-correlations at medium scale, and positive correlations at large scale among different forest landscapes. Forest cutting and forest fire are the major driving forces for the change of forest landscape in the study area. [Conclusion] Our assessment indicated that the forest landscapes in this area have presented the trends of fragmentation during the recent 100 years, due to the long term forest harvest, forest fires and other interference factors. Therefore, in order to establish and maintain a healthy and stable forest ecsystem from the level of landscape, we suggested that the following four measures should be adopted: 1) For restoring the forest vegetation, the continuous forestation mode and random forestation mode should be employed in small and large scales, respectively; 2) For selection of tree species, native species should be given priority, and spatial configuration of these species should also be given attention; 3) For forest harvesting, selective cutting and intermediate cutting should be used; 4) Finally, more attentions need to be paid to the effects of human activities (e.g., forest harvest, silviculture and roads construction) on the forest landscapes.

Key words: forest landscape, spatial point pattern, spatial association, O-ring function, kernel density function

CLC Number: