|
丁 芳, 嵇保中, 刘曙雯, 等. 黑翅土白蚁对松木粉及密黏褶菌腐木粉的觅食行为. 林业科学, 2015, 51 (6): 93- 99.
|
|
Ding F, Ji B Z, Liu S G, et al. Foraging behavior of Odontotermes formosanus (Shiraki) (Isoptera: Termitidae) workers to the Pinus massoniana wood powder and the powder infected by brown rot fungus Gloeophyllum trabeum. Scientia Silvae Sinicae, 2015, 51 (6): 93- 99.
|
|
高勇勇. 2021. 黑翅土白蚁和黑胸散白蚁磁定向行为与磁感应机制研究. 武汉: 华中农业大学.
|
|
Gao Y Y. 2021. Magnetic orientation and magnetoreception mechanisms of the termites Odontotermes formosanus and Reticulitermes chinensis. Wuhan: Huazhong Agricultural University. [in Chinese]
|
|
黄求应. 2006. 黑翅土白蚁觅食行为学基础及诱杀系统的研究. 武汉: 华中农业大学.
|
|
Huang Q Y. 2006. Study on foraging behavior and baiting system for Odontotermes formosanus (Isoptera: Termitidae). Wuhan: Huazhong Agricultural University. [in Chinese]
|
|
黄求应, 雷朝亮, 薛 东. 黑翅土白蚁的食物选择性研究. 林业科学, 2005, 41 (5): 91- 95.
doi: 10.3321/j.issn:1001-7488.2005.05.015
|
|
Huang Q Y, Lei C L, Xue D. Food choice of the underground termite, Odontotermes formosanus. Scientia Silvae Sinicae, 2005, 41 (5): 91- 95.
doi: 10.3321/j.issn:1001-7488.2005.05.015
|
|
唐 硕, 叶雨萌, 王雪佳, 等. 2023. 静磁场暴露对大鼠抑郁样行为及海马DR2和DAT表达的影响. 中国体视学与图像分析, 28(3): 294−301.
|
|
Tang S, Ye Y M, Wang X J, et al. 2023. Effects of static magnetic field exposure on the depression-like behaviorand D2 receptor and DAT expression in hippocampus of rats. Chinese Journal of Stereology and Image Analysis. 28(3): 294−301. [in Chinese]
|
|
王文晶. 2016. 近零磁场对白背飞虱生长发育、飞行能力及体内能源物质的影响研究. 南京: 南京农业大学.
|
|
Wang W J. 2016. Effects of near zero magnetic field on the development, flight behaviour and energy substrates of white-backed planthopper. Nanjin: Nanjing Agricultural University. [in Chinese]
|
|
王雪峰. 2019. 鸽子隐花色素ClCry的光磁受体性质研究. 长沙: 国防科技大学.
|
|
Wang X F. 2019. Photoreception and magnetoreception of pigeon Cryptochromes (ClCry). Changsha: National University of Defense Technology
|
|
王 怡, 姜宏健, 刘曙雯, 等. 黑胸散白蚁(等翅目: 鼻白蚁科)肛交哺物质的来源. 林业科学, 2020, 56 (11): 116- 123.
doi: 10.11707/j.1001-7488.20201112
|
|
Wang Y, Jiang H J, Liu Y W, et al. Sources of the proctodeal trophallaxis substances of Reticulitermes chinensis (Isoptera: Rhinotermitidae). Scientia Silvae Sinicae, 2020, 56 (11): 116- 123.
doi: 10.11707/j.1001-7488.20201112
|
|
张 明, 刘瑞莹, 贺静澜, 等. 近零磁场对褐飞虱翅型分化、趋光性及飞行能力的影响. 昆虫学报, 2019, 62 (1): 82- 90.
|
|
Zhang M, Liu R Y, He J L, et al. Wing-form differentiation, phototaxis and flight performance of the brown planthopper, Nilaparvata lugens ( Hemiptera: Delphacidae) under near-zero magnetic fields. Acta Entomologica Sinica, 2019, 62 (1): 82- 90.
|
|
赵方媛. 2020. 磁场对西方蜜蜂生存能力的影响及磁感应相关基因MagR和Cry的表达分析. 南昌: 江西农业大学.
|
|
Zhao F Y. 2020. Effect of magnetic field on survival and expression annalysis of magnetic receptor gene MagR and Cry in Apis wellifera L. Nanchang: Jiangxi Agricultural University. [in Chinese]
|
|
Bazalova O, Kvicalova M, Valkova T, et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (6): 1660- 1665.
|
|
Brembs B, Christiansen F, Pfluger H J, et al. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. Journal of Neuroscience, 2007, 27 (41): 11122- 11131.
doi: 10.1523/JNEUROSCI.2704-07.2007
|
|
Cashmore A R, Jarillo J A, Wu Y J, et al. Cryptochromes: blue light receptors for plants and animals. Science, 1999, 284 (5415): 760- 765.
doi: 10.1126/science.284.5415.760
|
|
Chang H, Fu X W, Zhao S Y, et al. Molecular characterization, tissue, and developmental expression profiles of MagR and Cryptochrome genes in Agrotisipsilon (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 2017, 110 (4): 422- 432.
doi: 10.1093/aesa/sax043
|
|
Chang H, Guo J L, Fu X W, et al. Molecular characterization and expression profiles of IscA1 gene in a long-distance migrant, Agrotis segetum. Journal of Asia-Pacific Entomology, 2018, 21 (4): 1299- 1306.
doi: 10.1016/j.aspen.2018.09.007
|
|
Damulewicz M, Mazzotta G M. One actor, aultiple roles: the performances of cryptochrome in Drosophila. Frontiers in Physiology, 2020, 11, 99.
doi: 10.3389/fphys.2020.00099
|
|
Dreyer D, Frost B, Mouritsen H, et al. The earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian bogong moth. Current Biology, 2018, 28 (13): 2160- 2166.
doi: 10.1016/j.cub.2018.05.030
|
|
Fleischmann P N, Grob R, Müller V L, et al. The geomagnetic field is a compass cue in Cataglyphis ant navigation. Current Biology, 2018, 28 (9): 1440- 1444.
doi: 10.1016/j.cub.2018.03.043
|
|
Gao Y Y, Huang Q Y, Xu H. Silencing Orco impaired the ability to perceive trail pheromones and affected locomotion behavior in two termite species. Journal of Economic Entomology, 2020, 113 (6): 2941- 2949.
doi: 10.1093/jee/toaa248
|
|
Gao Y Y, Wen P, Cardé R T, et al. In addition to cryptochrome 2, magnetic particles with olfactory co-receptor are important for magnetic orientation in termites. Communications Biology, 2021, 4 (1): 1121.
doi: 10.1038/s42003-021-02661-6
|
|
Hanzlik M, Heunemann C, Holtkamp-Rötzler E, et al. Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals, 2000, 13, 325- 331.
doi: 10.1023/A:1009214526685
|
|
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262
|
|
Maeda K, Henbest K B, Cintolesi F, et al. Chemical compass model of avian magnetoreception. Nature, 2008, 453 (7193): 387- 390.
doi: 10.1038/nature06834
|
|
Meister M. Physical limits to magnetogenetics. eLife, 2016, 5, e17210.
doi: 10.7554/eLife.17210
|
|
Molina-Montenegro M A, Acuña-Rodríguez I S, Ballesteros G I, et al. Electromagnetic fields disrupt the pollination service by honeybees. Science Advances, 2023, 9 (19): 1455.
doi: 10.1126/sciadv.adh1455
|
|
Mouritsen H. Long-distance navigation and magnetoreception in migratory animals. Nature, 2018, 558 (7708): 50- 59.
doi: 10.1038/s41586-018-0176-1
|
|
Myklatun A, Lauri A, Eder S H, et al. Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception. Nature Communications, 2018, 9 (1): 802.
doi: 10.1038/s41467-018-03090-6
|
|
Qin S Y, Yin H, Yang C L, et al. A magnetic protein biocompass. Nature Materials, 2016, 15 (2): 217- 226.
doi: 10.1038/nmat4484
|
|
Riveros A, Srygley R. 2008. Do leafcutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass? Animal Behaviour, 75(4): 1273-1281.
|
|
Shaw J, Boyd A, House M, et al. Magnetic particle-mediated magnetoreception. Journal of the Royal Society Interface, 2015, 12 (110): 20150499.
doi: 10.1098/rsif.2015.0499
|
|
Stapput K, Thalau P, Wiltschko R, et al. Orientation of birds in total darkness. Current Biology, 2008, 18 (8): 602- 606.
doi: 10.1016/j.cub.2008.03.046
|
|
Tong D D, Zhang L, Wu N N, et al. The oriental armyworm genome yields insights into the long-distance migration of noctuid moths. Cell Reports, 2022, 41 (12): 111843.
doi: 10.1016/j.celrep.2022.111843
|
|
Wan G J, Wang W J, Xu J J, et al. Cryptochromes and hormone signal transduction under near-zero magnetic fields: new clues to magnetic field effects in a rice planthopper. PLoS ONE, 2015, 10 (7): e0132966.
doi: 10.1371/journal.pone.0132966
|
|
Wan G J, Yuan R, Wang W J, et al. Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Animal Behaviour, 2016, 121, 107- 116.
doi: 10.1016/j.anbehav.2016.08.024
|
|
Wang Y Z, Chen J B, Zhu F, et al. Identification of medaka magnetoreceptor and cryptochromes. Science China-Life Sciences, 2017, 60, 271- 278.
doi: 10.1007/s11427-016-0266-5
|
|
Wiltschko R, Munro U, Ford H, et al. Light-dependent magnetoreception: orientation behaviour of migratory birds under dim red light. Journal of Experimental Biology, 2008, 211 (20): 3344- 3350.
doi: 10.1242/jeb.020313
|
|
Wiltschko R, Stapput K, Thalau P, et al. Directional orientation of birds by the magnetic field under different light conditions. Journal of the Royal Society Interface, 2010, 7 (2): 163- 177.
|
|
Xu H, Huang Q Y, Gao Y Y, et al. IDH knockdown alters foraging behavior in the termite Odontotermes formosanus in different social contexts. Currtnt Zoology, 2021, 67 (6): 609- 620.
doi: 10.1093/cz/zoab032
|
|
Xu J J, Pan W, Zhang Y C, et al. Behavioral evidence for a magnetic sense in the oriental armyworm, Mythimna separata. Biology Open, 2017, 6 (3): 340- 347.
|
|
Xu J J, Zhang Y C, Wu J Q, et al. Molecular characterization, spatial-temporal expression and magnetic response patterns of iron-sulfur cluster assembly1 (IscA1) in the rice planthopper, Nilaparvatalugens. Insect Science, 2019, 26 (3): 413- 423.
doi: 10.1111/1744-7917.12546
|
|
Zhan S, Merlin C, Boore J L, et al. The monarch butterfly genome yields insights into long-distance migration. Cell, 2011, 147 (5): 1171- 1185.
doi: 10.1016/j.cell.2011.09.052
|
|
Zhang B F, Wang L, Zhan A S, et al. Long-term exposure to a hypomagnetic field attenuates adult hippocampal neurogenesis and cognition. Nature Communications, 2021, 12 (1): 1174.
doi: 10.1038/s41467-021-21468-x
|
|
Zhu H S, Yuan Q, Briscoe A D, et al. The two CRYs of the butterfly. Current Biology, 2005, 15 (23): 953- 954.
doi: 10.1016/j.cub.2005.11.030
|