林业科学 ›› 2024, Vol. 60 ›› Issue (7): 175-190.doi: 10.11707/j.1001-7488.LYKX20230110
• 综合评述 • 上一篇
收稿日期:
2023-03-22
出版日期:
2024-07-25
发布日期:
2024-08-19
通讯作者:
刘敬泽
E-mail:bxj@nwafu.edu.cn
基金资助:
Xuejuan Bai1,2(),Guoqing Zhai1,Jingze Liu1,*
Received:
2023-03-22
Online:
2024-07-25
Published:
2024-08-19
Contact:
Jingze Liu
E-mail:bxj@nwafu.edu.cn
摘要:
绿色植物通过光合作用吸收大气中的CO2,是陆地生态系统的主要碳(C)源,量化光合C在植物-土壤系统间的分配,对于明确C的周转与存留、预测气候变化背景下植被和土壤C库潜力具有重要意义。13C稳定同位素技术具有准确性和易操作性,在C循环研究中被广泛应用,为探究植物-土壤系统C分配、土壤微生物群落结构、C利用效率和土壤C矿化为CO2通量变化等特性提供重要技术支撑。本研究首先介绍13C稳定同位素的发展和标记方法,主要有13C脉冲(单次与多次)标记、13C连续标记、借助C4土壤种植C3植物确定13C丰度以及不改变植被条件鉴定自然13C丰度等。其次总结该技术在植物-微生物-土壤系统C循环中的应用:主要包括13C同位素标记在植物-土壤系统C分配,13C自然丰度技术在树木生长轮和植物群落水平C循环、土壤有机C形成与分解过程中的应用;在土壤微生物方面,概述13C稳定同位素在磷脂脂肪酸、氨基糖、芯片-稳定同位素探针、纳米二次离子质谱同位素成像、荧光原位杂交-纳米二次离子质谱技术等微生物标志物上的应用。接着总结13C稳定同位素方法的缺点,即13C样品检测价格昂贵、由于13C分馏作用影响13C丰度检测不准确及13C标记与微生物标志物技术结合对13C标记丰度要求较高等。最后,对未来13C同位素示踪技术研究提出展望:在理论上,需探究13C标记底物在植物-土壤-微生物系统C分配、转化和固持的作用机制和影响机制,构建统计与验证模型;在应用上,应注重交叉学科的运用,将地理信息系统、遥感等地学技术与13C稳定同位素相结合,从更广泛、更全面的角度推进陆地生态系统C循环研究。
中图分类号:
白雪娟,翟国庆,刘敬泽. 13C稳定同位素在陆地生态系统植物-微生物-土壤碳循环中的应用[J]. 林业科学, 2024, 60(7): 175-190.
Xuejuan Bai,Guoqing Zhai,Jingze Liu. Application of 13C Stable Isotopes in Plant-Microbial-Soil Carbon Cycle in Terrestrial Ecosystem[J]. Scientia Silvae Sinicae, 2024, 60(7): 175-190.
表1
氨基糖种类、分布及土壤所占比例"
氨基糖Amino sugar(AS) | 来源Source | 比例Scale(%) | 参考文献Reference |
氨基葡萄糖 Glucosamine(GlcN) | 主要为真菌 Mainly from fungi | 47~68 | |
氨基半乳糖 Galactosamine(GalN) | 细菌与真菌 Bacteria and fungi | 17~42 | |
甘露糖胺 Mannosamine(ManN) | 细菌与真菌 Bacteria and fungi | 4 | |
胞壁酸 Muramic acid(MurN) | 细菌Bacteria | 3~16 |
图4
Chip-SIP、NanoSIP、FISH-NanoSIMS技术在鉴定微生物生理生态学与功能方面的应用 A. NanoSIMS 13C同位素比率图像的ITO微阵列与在13C葡萄糖上生长的单株菌株的RNA杂交拼接图(引用自Mayali et al., 2012);B.被G. hoi菌丝定殖的杉木根NanoSIP拼接图像(引用自Nuccio et al., 2013);C. 附着在杂囊上的丝状蓝藻(Filamentous cyanobacteria)和α-变形杆菌(Alphaproteobacteria)的13C-FISH-NanoSIMS图像(引用自Behrens et al., 2008)。"
白雪娟. 2021. 山杨和辽东栎光合碳的分配及土壤有机碳的微生物形成机制. 杨凌: 西北农林科技大学. | |
Bai X J. 2021. Distribution of photosynthetic carbon and microbial formation mechanism of soil organic carbon of Populus davidiana and Quercus wutaishanica. Yangling: Northwest A&F University. [in Chinese] | |
陈 晨, 柏耀辉, 梁金松, 等. FISH-NanoSIMS技术在环境微生物生态学上的应用研究. 环境科学, 2015, 36 (1): 244- 251. | |
Chen C, Bai Y H, Liang J S, et al. Application of FISH-NanoSIMS technique in environmental microbial ecology study. Environmental Science, 2015, 36 (1): 244- 251. | |
陈法霖, 郑 华, 欧阳志云, 等. 土壤微生物群落结构对枯落物组成变化的响应. 土壤学报, 2011, 48 (3): 603- 611.
doi: 10.11766/trxb201005130189 |
|
Chen F L, Zheng H, Ouyang Z Y, et al. Responses of microbial community structure to the leaf litter composition. Acta Pedologica Sinica, 2011, 48 (3): 603- 611.
doi: 10.11766/trxb201005130189 |
|
陈世苹, 白永飞, 韩兴国. 稳定性碳同位素技术在生态学研究中的应用. 植物生态学报, 2002, 26 (5): 549- 560.
doi: 10.3321/j.issn:1005-264X.2002.05.007 |
|
Chen S P, Bai Y F, Han X G. Applications of stable carbon isotope techniques to ecological research. Chinese Journal of Plant Ecology, 2002, 26 (5): 549- 560.
doi: 10.3321/j.issn:1005-264X.2002.05.007 |
|
陈 甜, 元方慧, 张琳梅, 等. 不同化学性质叶枯落物添加对土壤有机碳矿化及激发效应的影响. 应用生态学报, 2022, 33 (10): 2602- 2610. | |
Chen T, Yuan F H, Zhang L M, et al. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect. Chinese Journal of Applied Ecology, 2022, 33 (10): 2602- 2610. | |
陈琢玉, 涂成龙, 何令令. 13C-PLFA分析方法及其在土壤微生物研究中的应用. 地球与环境, 2019, 47 (4): 537- 545. | |
Chen Z Y, Tu C L, He L L. A review on the 13C-PLFA analysis method and its application in soil microbial researches. Earth and Environment, 2019, 47 (4): 537- 545. | |
丛 毓. 2019. 岳桦的养分生理及对长白山林线形成的意义. 长春: 东北师范大学. | |
Cong Y. 2019. Nutrient physiology of Betula ermanii and its implications to tree line formation of Changbai Mountains. Changchun: Northeast Normal University. [in Chinese] | |
邓扬悟, 唐 纯, 袁红朝, 等. 13C脉冲标记法: 不同生育期水稻光合碳在植物-土壤系统中的分配. 生态学报, 2017, 37 (19): 6466- 6471. | |
Deng Y W, Tang C, Yuan H C, et al. The 13C-CO2 pulsing labeling method: distribution of rice photosynthetic carbon in plant-soil systems during different rice growth stages. Acta Ecologica Sinica, 2017, 37 (19): 6466- 6471. | |
杜宗敏, 杨瑞馥. 生物标志物在微生物鉴定和检测中的应用. 微生物学免疫学进展, 2003, 31 (3): 67- 73.
doi: 10.3969/j.issn.1005-5673.2003.03.017 |
|
Du Z M, Yang R F. Application of biomarkers in microbial identification and detection. Progress in Microbiology and Immunology, 2003, 31 (3): 67- 73.
doi: 10.3969/j.issn.1005-5673.2003.03.017 |
|
范玮熠, 王孝安. 树木年轮稳定碳同位素与气候变化的关系研究进展. 陕西师范大学学报(自然科学版), 2004, (S2): 148- 151. | |
Fan W Y, Wang X A. Advances in studies on relationships between tree-ring stable carbon isotope and climate change. Journal of Shaanxi Normal University (Natural Science Edition), 2004, (S2): 148- 151. | |
方精云. 碳中和的生态学透视. 植物生态学报, 2021, 45 (11): 1173- 1176.
doi: 10.17521/cjpe.2021.0394 |
|
Fang J Y. Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 2021, 45 (11): 1173- 1176.
doi: 10.17521/cjpe.2021.0394 |
|
冯秋红, 程瑞梅, 史作民, 等. 巴郎山刺叶高山栎叶片δ13C对海拔高度的响应. 生态学报, 2011, 31 (13): 3629- 3637. | |
Feng Q H, Cheng R M, Shi Z M, et al. Response of foliar δ13C of Quercus spinosa to altitudinal gradients. Acta Ecologica Sinica, 2011, 31 (13): 3629- 3637. | |
冯晓娟, 王依云, 刘 婷, 等. 生物标志物及其在生态系统研究中的应用. 植物生态学报, 2020, 44 (4): 384- 394.
doi: 10.17521/cjpe.2019.0139 |
|
Feng X J, Wang Y Y, Liu T, et al. Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 2020, 44 (4): 384- 394.
doi: 10.17521/cjpe.2019.0139 |
|
傅声雷, Howard F. 植物种类、大气二氧化碳和土壤氮素的交互作用或累加效应控制“植物-土壤”系统的碳分配. 中国科学: 生命科学, 2006, 36 (3): 273- 282. | |
Fu S L, Howard F. The interaction or accumulation effect of plant species, atmospheric carbon dioxide and soil nitrogen controls the carbon distribution of the "plant-soil" system. Scientia Sinica (Vitae), 2006, 36 (3): 273- 282. | |
葛 源, 贺纪正, 郑源明, 等. 稳定性同位素探测技术在微生物生态学研究中的应用. 生态学报, 2006, 26 (5): 1574- 1582.
doi: 10.3321/j.issn:1000-0933.2006.05.036 |
|
Ge Y, He J Z. Zheng Y M, et al. Stable isotope probing and its applications in microbial ecology. Acta Ecologica Sinica, 2006, 26 (5): 1574- 1582.
doi: 10.3321/j.issn:1000-0933.2006.05.036 |
|
桂意云, 李海碧, 韦金菊, 等. 脉冲标记下甘蔗13C富集及氮磷钾含量变化. 核农学报, 2023, 37 (3): 586- 593.
doi: 10.11869/j.issn.1000-8551.2023.03.0586 |
|
Gui Y Y, Li H B, Wei J J, et al. Enrichment of 13C and changes of N, P, K contents in sugarcane under pulse labeling. Journal of Nuclear Agricultural Sciences, 2023, 37 (3): 586- 593.
doi: 10.11869/j.issn.1000-8551.2023.03.0586 |
|
郭金强, 袁华茂, 宋金明, 等. 氨基糖单体碳氮同位素的分析及其应用. 应用生态学报, 2020, 31 (5): 1753- 1762. | |
Guo J Q, Yuan H M, Song J M, et al. Compound-specific carbon and nitrogen isotope analysis of amino sugars and their applications. Chinese Journal of Applied Ecology, 2020, 31 (5): 1753- 1762. | |
何敏毅, 孟凡乔, 史雅娟, 等. 用13C脉冲标记法研究玉米光合碳分配及其向地下的输入. 环境科学, 2008, 29 (2): 446- 453.
doi: 10.3321/j.issn:0250-3301.2008.02.029 |
|
He M Y, Meng F J, Shi Y J, et al. Estimating photosynthesized carbon distribution and Inputs into belowground in a maize soil following 13C Pulse-labeling. Environmental Science, 2008, 29 (2): 446- 453.
doi: 10.3321/j.issn:0250-3301.2008.02.029 |
|
何 森. 2021. 基于DNA-SIP研究竹林扩张对参与土壤碳循环微生物的影响. 赣州: 江西理工大学. | |
He S. 2021. Study on the effect of bamboo forest expansion on microorganisms involved in soil carbon cycle by DNA-SIP. Ganzhou: Jiangxi University of Science and Technology. [in Chinese] | |
胡行伟, 张丽梅, 贺纪正. 纳米二次离子质谱技术(NanoSIMS)在微生物生态学研究中的应用. 生态学报, 2013, 33 (2): 348- 357.
doi: 10.5846/stxb201111301826 |
|
Hu H W, Zhang L M, He J Z. Application of nano-scale secondary ion mass spectrometry to microbial ecology study. Acta Ecologica Sinica, 2013, 33 (2): 348- 357.
doi: 10.5846/stxb201111301826 |
|
姬洪飞, 王 颖. 分子生物学方法在环境微生物生态学中的应用研究进展. 生态学报, 2016, 36 (24): 8234- 8243. | |
Ji H F, Wang Y. Advance in molecular approach applications in microbial ecology studies. Acta Ecologica Sinica, 2016, 36 (24): 8234- 8243. | |
贾仲君. 稳定性同位素核酸探针技术DNA-SIP原理与应用. 微生物学报, 2011, 51 (12): 1585- 1594. | |
Jia Z J. Principle and application of DNA-based stable isotope probing. Acta Microbiologica Sinica, 2011, 51 (12): 1585- 1594. | |
姜联合. 全球碳循环: 从基本的科学问题到国家的绿色担当. 科学, 2021, 73 (1): 39- 43. | |
Jiang L H. Global carbon cycle: from fundamental scientific problem to green responsibility. Science, 2021, 73 (1): 39- 43. | |
姜懿珊, 孙迎韬, 张 干, 等. 森林土壤微生物与植物碳源的磷脂脂肪酸及其单体同位素研究. 地球化学, 2022, 51 (1): 9- 18. | |
Jiang Y S, Sun Y T, Zhang G, et al. Mountain forest soil microbial communities and carbon source study by phospholipid fatty acid structure and compound-specific isotope analysis. Geochimica, 2022, 51 (1): 9- 18. | |
雷 帅, 何春霞, 张劲松, 等. 稳定碳同位素技术在生态系统研究中的应用. 同位素, 2020, 33 (1): 53- 66.
doi: 10.7538/tws.2018.youxian.092 |
|
Lei S, He C X, Zhang J S, et al. A review of the application of stable carbon isotopes to ecosystem research. Journal of Isotopes, 2020, 33 (1): 53- 66.
doi: 10.7538/tws.2018.youxian.092 |
|
李明财, 黎贞发, 易现峰, 等. 青藏高原东部高寒草甸植物δ13C年间变化及其环境分析. 生态环境学报, 2007, 16 (4): 1205- 1210.
doi: 10.3969/j.issn.1674-5906.2007.04.027 |
|
Li M C, Li Z F, Yi X F, et al. Annual variation of plant δ13C and its environmental analysis in alpine meadow in the east of Tibetan Plateau. Ecology and Environmental Sciences, 2007, 16 (4): 1205- 1210.
doi: 10.3969/j.issn.1674-5906.2007.04.027 |
|
李玉宁, 王关玉, 李 伟. 土壤呼吸作用和全球碳循环. 地学前缘, 2002, (2): 351- 357.
doi: 10.3321/j.issn:1005-2321.2002.02.013 |
|
Li Y N, Wang G Y, Li W. Soil respiration and global carbon cycle. Earth Science Frontiers, 2002, (2): 351- 357.
doi: 10.3321/j.issn:1005-2321.2002.02.013 |
|
李增强, 赵炳梓, 张佳宝. 13C标记磷脂脂肪酸分析在土壤微生物生态研究中的应用. 中国生态农业学报, 2016, 24 (4): 470- 477. | |
Li Z Q, Zhao B Z, Zhang J B. Application of 13C-labeled PLFA analysis in soil microbial ecology studies. Chinese Journal of Eco-Agriculture, 2016, 24 (4): 470- 477. | |
梁 超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 2021, 51 (5): 680- 695. | |
Liang C, Zhu X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Science China Earth Sciences, 2021, 51 (5): 680- 695. | |
林光辉. 2013. 稳定同位素生态学. 北京: 高等教育出版社. | |
Lin G H. 2013. Stable isotope ecology. Beijing: Higher Education Press. [in Chinese] | |
林 鹏. 1986. 植物群落学. 上海: 上海科学技术出版社. | |
Lin P. 1986. Phytocoenology. Shanghai: Shanghai Science and Technology Press. [in Chinese] | |
林 森. 2021. 腐殖酸对水稻光合碳的输入、转化及稳定过程的影响机制. 长沙: 中南林业科技大学. | |
Lin S. 2021. Effect of humic acid on the distribution of photosynthetic carbon and its rhizosphere priming effect in paddy soil. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
刘 峰, 王云秋, 张 昀, 等. 长期秸秆还田对水稻根系碳矿化与激发效应的影响. 环境科学, 2022, 43 (8): 4372- 4378. | |
Liu F, Wang Y Q, Zhang Y, et al. Effect of long-term straw returning on the mineralization and priming effect of rice root-carbon. Environmental Science, 2022, 43 (8): 4372- 4378. | |
刘 洁, 杨 妍, 韩兰芳, 等. 生物质炭微生物矿化稳定性机制研究进展. 环境化学, 2021, 40 (1): 174- 184.
doi: 10.7524/j.issn.0254-6108.2020050604 |
|
Liu J, Yang Y, Han L F, et al. Research progress on the mechanism of microbial mineralization stability of biochar. Environmental Chemistry, 2021, 40 (1): 174- 184.
doi: 10.7524/j.issn.0254-6108.2020050604 |
|
刘 颖, 韩士杰. 长白山四种森林土壤呼吸的影响因素. 生态环境学报, 2009, 18 (3): 1061- 1065.
doi: 10.3969/j.issn.1674-5906.2009.03.048 |
|
Liu Y, Han S J. Factor controlling soil respiration in four types of forest of Changbai Mountains, China. Ecology and Environmental Sciences, 2009, 18 (3): 1061- 1065.
doi: 10.3969/j.issn.1674-5906.2009.03.048 |
|
潘业兴, 王 帅. 2016. 植物生理学. 延吉: 延边大学出版社. | |
Pan Y X, Wang S. 2016. Plant physiology. Yanji: Yanbian University Press. [in Chinese] | |
秦 莉, 尚华明, 张同文, 等. 天山南北坡树轮稳定碳同位素对气候的响应差异. 生态学报, 2021, 41 (14): 5713- 5724. | |
Qin L, Shang H M, Zhang T W, et al. Response comparison of the tree-ring δ13C to climate on the southern and northern slopes of Tianshan Mountains. Acta Ecologica Sinica, 2021, 41 (14): 5713- 5724. | |
冉珊珊, 时 宇, 黄 黄, 等. 用13C脉冲标记法研究互花米草光合碳的分配. 生态环境学报, 2019, 28 (2): 270- 275. | |
Ran S S, Shi Y, Huang H, et al. Researching photosynthesized carbon allocation of S. alterniflora following 13C Pulse-labeling. Ecology and Environmental Sciences, 2019, 28 (2): 270- 275. | |
任 军, 郭金瑞, 边秀芝, 等. 土壤有机碳研究进展. 中国土壤与肥料, 2009, (6): 1- 7, 27.
doi: 10.3969/j.issn.1673-6257.2009.06.001 |
|
Ren J, Guo J R, Bian X Z, et al. The research progress on organic carbon. Soil and Fertilizer Sciences in China, 2009, (6): 1- 7, 27.
doi: 10.3969/j.issn.1673-6257.2009.06.001 |
|
任逸文, 肖谋良, 袁红朝, 等. 水稻光合碳在植物-土壤系统中的分配及其对CO2升高和施氮的响应. 应用生态学报, 2018, 29 (5): 1397- 1404. | |
Ren Y W, Xiao M L, Yuan H C, et al. Allocation of rice photosynthates in plant-soil system in response to elevated CO2 and nitrogen fertilization. Chinese Journal of Applied Ecology, 2018, 29 (5): 1397- 1404. | |
阮佳怡, 翁晓虹, 隋 心. 2022. 基于Web of Science的土壤氨基糖研究趋势分析. 中国环境科学学会2022年科学技术年会——环境工程技术创新与应用分会场论文集(二), 345−351. | |
Ruan J Y, Weng X H, Sui X. 2022. Research trend analysis of soil amino sugar based on Web of Science. 2022 Annual Conference of Science and Technology of Chinese Academy of Environmental Sciences-Symposium on Innovation and Application of Environmental Engineering Technology (II), 345−351. [in Chinese] | |
邵鹏帅, 解宏图, 鲍雪莲, 等. 森林次生演替过程中有机质层和矿质层土壤微生物残体的变化. 土壤学报, 2021, 58 (4): 1050- 1059. | |
Shao P S, Xie H T, Bao X L, et al. Variation of microbial residues during forest secondary succession in topsoil and subsoil. Acta Pedologica Sinica, 2021, 58 (4): 1050- 1059. | |
邵 帅, 何红波, 张 威, 等. 土壤有机质形成与来源研究进展. 吉林师范大学学报(自然科学版), 2017, 38 (1): 126- 130. | |
Shao S, He H B, Zhang W, et al. Soil organic matter formation and origin: a review. Journal of Jilin Normal University (Natural Science Edition), 2017, 38 (1): 126- 130. | |
宋斗妍, 白 震, 何红波, 等. PLFAs稳定同位素技术及其在土壤微生物学中的应用. 土壤通报, 2008, 39 (6): 1475- 1479.
doi: 10.3321/j.issn:0564-3945.2008.06.051 |
|
Song D Y, Bai Z, He H B, et al. Stable isotope techniques of PLFAs and It's application in soil microbiology. Chinese Journal of Soil Science, 2008, 39 (6): 1475- 1479.
doi: 10.3321/j.issn:0564-3945.2008.06.051 |
|
宋璐璐, 樊江文, 吴绍洪. 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 2011, 30 (11): 1431- 1439.
doi: 10.11820/dlkxjz.2011.11.014 |
|
Song L L, Fan J W, Wu S H. Research advance on changes of leaf traits along an altitude gradient. Progress in Geography, 2011, 30 (11): 1431- 1439.
doi: 10.11820/dlkxjz.2011.11.014 |
|
孙建飞, 戴崴巍, 贺同鑫, 等. 蒙古栎叶片及其土壤碳、氮同位素自然丰度对大气CO2浓度升高的响应. 应用生态学报, 2017, 28 (7): 2179- 2185. | |
Sun J F, Dai W W, He T X, et al. Responses of the natural abundance of carbon and nitrogen isotopes of Quercus mongolica leaf and soil to elevated CO2. Chinese Journal of Applied Ecology, 2017, 28 (7): 2179- 2185. | |
孙昭安, 陈 清, 韩 笑, 等. 13C脉冲标记法定量冬小麦光合碳分配及其向地下的输入. 环境科学, 2018, 39 (6): 2837- 2844. | |
Sun Z A, Chen Q, Han X, et al. Estimation of winter wheat photosynthesized carbon distribution and allocation belowground via 13C pulse-labeling. Environmental Science, 2018, 39 (6): 2837- 2844. | |
谭立敏, 吴 昊, 李 卉, 等. 2014. 不同施氮量下水稻分蘖期光合碳向土壤碳库的输入及其分配的量化研究: 13C连续标记法. 环境科学, 35(5): 1933-1938. | |
Tan L M, Wu H, Li H, et al. 2014. Input and distribution of rice photosynthesized carbon in the tillering stage under different nitrogen application following continuous 13C labeling. Environmental Science, 35(5): 1933-1938. [in Chinese] | |
韦莉莉, 张小全, 侯振宏, 等. 杉木苗木光合作用及其产物分配对水分胁迫的响应. 植物生态学报, 2005, 29 (3): 394- 402.
doi: 10.3321/j.issn:1005-264X.2005.03.008 |
|
Vei L L, Zhang X Q, Hou Z H, et al. Effects of water stress on photosynthesis and carbon allocation in Cunninghamia lanceolata seedling. Chinese Journal of Plant Ecology, 2005, 29 (3): 394- 402.
doi: 10.3321/j.issn:1005-264X.2005.03.008 |
|
王婷婷, 祝贞科, 朱捍华, 等. 施氮和水分管理对光合碳在土壤-水稻系统间分配的量化研究. 环境科学, 2017, 38 (3): 1227- 1234. | |
Wang T T, Zhu Z K, Zhu H H, et al. Input and distribution of photosynthesized carbon in soil-rice system affected by water management and nitrogen fertilization. Environmental Science, 2017, 38 (3): 1227- 1234. | |
王辛辛, 刘 岩, 张 威, 等. 基于稳定性同位素核酸探针技术的红壤微生物底物利用策略研究. 土壤学报, 2022, 59 (1): 274- 284. | |
Wang X X, Liu Y, Zhang W, et al. Strategies for soil microbes utilizing exogenous substrates in ultisol based on nucleic acid stable isotope probing technique. Acta Pedologica Sinica, 2022, 59 (1): 274- 284. | |
王智平, 陈全胜. 植物近期光合碳分配及转化. 植物生态学报, 2005, 29 (5): 845- 850.
doi: 10.3321/j.issn:1005-264X.2005.05.020 |
|
Wang Z P, Chen Q S. Recently photosynthesized carbon allocation and turnover: a minor review of the literature. Chinese Journal of Plant Ecology, 2005, 29 (5): 845- 850.
doi: 10.3321/j.issn:1005-264X.2005.05.020 |
|
王云龙, 许振柱, 周广胜. 水分胁迫对羊草光合产物分配及其气体交换特征的影响. 植物生态学报, 2004, 28 (6): 803- 809.
doi: 10.3321/j.issn:1005-264X.2004.06.009 |
|
Wang Y L, Xu Z Z, Zhou G S. Changes in biomass allocation and gas exchange characteristics of Leymus chinensis in response to soil water stress. Chinese Journal of Plant Ecology, 2004, 28 (6): 803- 809.
doi: 10.3321/j.issn:1005-264X.2004.06.009 |
|
许文强, 罗格平, 陈 曦, 等. 天山北坡土壤有机碳δ13C组成随海拔梯度的变化. 同位素, 2016, 29 (3): 140- 145.
doi: 10.7538/tws.2016.29.03.0140 |
|
Xu W Q, Luo G P, Chen X, et al. Soil organic δ13C change along a vertical gradient in the northern slop of Tianshan Mountains. Journal of Isotopes, 2016, 29 (3): 140- 145.
doi: 10.7538/tws.2016.29.03.0140 |
|
徐英德. 2020. 玉米残体碳向土壤有机碳转化的微生物介导过程解析. 沈阳: 沈阳农业大学. | |
Xu Y D. 2020. Analysis of the microbe-mediated transformation of maize residue carbon into soil organic carbon. Shenyang: Shenyang Agricultural University. [in Chinese] | |
杨庆朋, 徐 明, 刘洪升, 等. 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 2011, 31 (8): 2301- 2311. | |
Yang Q P, Xu M, Liu H S, et al. Impact factors and uncertainties of the temperature sensitivity of soil respiration. Acta Ecologica Sinica, 2011, 31 (8): 2301- 2311. | |
杨文海. 浅议树木年轮和气候因子的相关性. 林业与生态, 2020, (7): 42- 43. | |
Yang W H. Discussion on correlation between tree rings and climatic factors. Forestry and Ecology, 2020, (7): 42- 43. | |
杨元合, 石 岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学: 生命科学, 2022, 52 (4): 534- 574. | |
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Scientia Sinica Vitae, 2022, 52 (4): 534- 574. | |
于雅茜. 2022. 13C标记玉米根茎叶添加对不同肥力棕壤呼吸与激发效应的影响. 沈阳: 沈阳农业大学. | |
Yu Y X. 2022. Effect of the addition of root, stem and leaf of 13C-labeled maize residues on brown earth's respiration and priming effect. Shenyang: Shenyang Agricultural University. [in Chinese] | |
张天霖, 蔡章林, 赵厚本, 等. 13C脉冲标记法研究非正常枯落物对土壤有机碳的激发效应. 生态环境学报, 2021, 30 (9): 1797- 1804. | |
Zhang T L, Cai Z L, Zhao H B, et al. Priming effect on soil organic carbon by abnormal litter following 13C pulse-labeling. Ecology and Environmental Sciences, 2021, 30 (9): 1797- 1804. | |
张 蕊, 赵 钰, 何红波, 等. 基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响. 应用生态学报, 2017, 28 (7): 2379- 2388. | |
Zhang R, Zhao Y, He H B, et al. Investigation on effects of elevated atmospheric CO2 concentration on plant-soil system carbon cycling: based on stable isotopic technique. Chinese Journal of Applied Ecology, 2017, 28 (7): 2379- 2388. | |
郑紫薇. 2014. 山东塔山黑松树轮稳定碳同位素组成及其气候意义. 济南: 山东师范大学. | |
Zheng Z W. 2014. The analysis of the stable carbon isotope composition of tree ring of pinus thunbergii and climate significance in Tashan Mountain, Shandong Province. Jinan: Shandong Normal University. [in Chinese] | |
周 桔, 雷 霆. 土壤微生物多样性影响因素及研究方法的现状与展望. 生物多样性, 2007, 15 (3): 306- 311.
doi: 10.3321/j.issn:1005-0094.2007.03.012 |
|
Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil mi-crobial diversity. Biodiversity Science, 2007, 15 (3): 306- 311.
doi: 10.3321/j.issn:1005-0094.2007.03.012 |
|
周正虎, 刘 琳, 侯 磊. 土壤有机碳的稳定和形成: 机制和模型. 北京林业大学学报, 2022, 44 (10): 11- 22.
doi: 10.12171/j.1000-1522.20220183 |
|
Zhou Z H, Liu L, Hou L. Soil organic carbon stabilization and formation: mechanism and model. Journal of Beijing Forestry University, 2022, 44 (10): 11- 22.
doi: 10.12171/j.1000-1522.20220183 |
|
Alfred O N. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Review, 1950, 77 (6): 789- 793.
doi: 10.1103/PhysRev.77.789 |
|
Appuhn A, Joergensen R G. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 2005, 38 (5): 1040- 1051. | |
Bai X J, Huaung YM, Wang B R, et al. Belowground allocation and fate of tree assimilates in plant-soil-microorganisms system: 13C labeling and tracing under field conditions. Geoderma, 2021a, 404, 115296.
doi: 10.1016/j.geoderma.2021.115296 |
|
Bai X J, Yang X, Zhang S M, et al. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 2021b, 57 (4): 563- 574.
doi: 10.1007/s00374-021-01549-1 |
|
Barthel M, Hammerle A, Sturm P, et al. The diel imprint of leaf metabolism on the δ13C signal of soil respiration under control and drought conditions. New Phytologist, 2011, 192 (4): 925- 938.
doi: 10.1111/j.1469-8137.2011.03848.x |
|
Behrens S, Lösekann T, Pett-Ridge J, et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Applied and Environmental Microbiology, 2008, 74 (10): 3143- 4150.
doi: 10.1128/AEM.00191-08 |
|
Bender M M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry, 1971, 10 (6): 1239- 1244.
doi: 10.1016/S0031-9422(00)84324-1 |
|
Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464 (7288): 579- 582.
doi: 10.1038/nature08930 |
|
Bore E K, Kuzyakov Y, Dippold M A. Glucose and ribose stabilization in soil: Convergence and divergence of carbon pathways assessed by position-specific labeling. Soil Biology and Biochemistry, 2019, 131 (4): 54- 61. | |
Brunner I, Herzog C, Dawes MA, et al. How tree roots respond to drought. Frontiers in Plant Science, 2015, 6, 547. | |
Cai Y, Ma T, Wang YY, Jia J, Jia YF, Liang C, Feng XJ. Assessing the accumulation efficiency of various microbial carbon components in soils of different minerals. Geoderma, 2022, 407 (5): 115562. | |
Christian K, Sebastian L, Susanna R, et al. Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alpine Botany, 2016, 126 (2): 153- 166.
doi: 10.1007/s00035-016-0170-x |
|
Craig H. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta, 1953, 3 (2/3): 53- 92. | |
Craig M E, Geyer K M, Beidler K V, et al. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nature Communications, 2022, 13 (1): 1229.
doi: 10.1038/s41467-022-28715-9 |
|
Dai H H, Gao J F, Li D C, et al. DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Water Research, 2022, 210, 118011.
doi: 10.1016/j.watres.2021.118011 |
|
Dekas A E, Connon S A, Chadwick G L, et al. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. The ISME Journal, 2016, 10 (3): 678- 692.
doi: 10.1038/ismej.2015.145 |
|
Ding X L, Zhang B, Zhang X D, et al. Effects of tillage and crop rotation on soil microbial residues in a rainfed agroecosystem of northeast China. Soil and Tillage Research, 2011, 114 (1): 43- 49.
doi: 10.1016/j.still.2011.03.008 |
|
Ding X L, Han X Z, Zhang X D. Long-term impacts of manure straw and fertilizer on amino sugars in a silty clay loam soil under temperate conditions. Biology and Fertility of Soils: Cooperating Journal of the International Society of Soil Science, 2013, 49 (7): 949- 954. | |
Farmer J G, Baxter M S. Atmospheric carbon dioxide levels as indicated by the stable isotope record in wood. Nature, 1974, 247 (5439): 273- 275.
doi: 10.1038/247273a0 |
|
Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40 (1): 503- 537.
doi: 10.1146/annurev.pp.40.060189.002443 |
|
Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 1984, 11 (6): 539- 552.
doi: 10.1071/PP9840539 |
|
Farrar J F, Williams M L. The effects of increased atmosphereric carbon dioxide and temperature on carbon partitioning, source-sink relations and relationship. Plant Cell and Environment, 1991, 14 (8): 819- 830.
doi: 10.1111/j.1365-3040.1991.tb01445.x |
|
Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry, 35(6): 837-843. | |
Fu Y Y, Luo Y, Auwal M, et al. Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria. Biology and Fertility of Soils: Cooperating Journal of the International Society of Soil Science, 2022a, 58 (5): 565- 577. | |
Fu Y Y, Luo Y, Tang C X, et al. Succession of the soil bacterial community as resource utilization shifts from plant residues to rhizodeposits. Soil Biology and Biochemistry, 2022b, 173, 108785.
doi: 10.1016/j.soilbio.2022.108785 |
|
Galdo I D, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 2011, 9 (8): 1204- 1213. | |
Garten C T, Taylor G E. Foliar δ13C within a temperate deciduous forest: spatial, temporal, and species sources of variation. Oecologia, 1992, 90, 1- 7.
doi: 10.1007/BF00317801 |
|
Gaul D, Hertel D, Borken W, et al. Effects of experimental drought on the fine root system of mature Norway spruce. Forest Ecology and Management, 2008, 256 (5): 1151- 1159.
doi: 10.1016/j.foreco.2008.06.016 |
|
Gentry T J, Wickham G S, Schadt C W, et al. Microarray applications in microbial ecology research. Microbial Ecology, 2006, 52 (2): 159- 175.
doi: 10.1007/s00248-006-9072-6 |
|
Georgiou K, Abramoff R Z, Harte J, et al. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nature Communications, 2017, 8 (1): 1223- 1233.
doi: 10.1038/s41467-017-01116-z |
|
Gunina A, Kuzyakov Y. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biology and Biochemistry, 2014, 71, 95- 104.
doi: 10.1016/j.soilbio.2014.01.011 |
|
Guo G, Kong W, Liu J, et al. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Applied Microbiology and Biotechnology, 2015, 99 (20): 8765- 8776.
doi: 10.1007/s00253-015-6723-x |
|
Hagedorn F, Joseph J, Peter M, et al. Recovery of trees from drought depends on belowground sink control. Nature Plants, 2016, 2 (8): 16111.
doi: 10.1038/nplants.2016.111 |
|
Hill T C J, McPherson E F, Harris J A, et al. Microbial biomass estimated by phospholipid phosphate in soils with diverse microbial communities. Soil Biology and Biochemistry, 1993, 25 (12): 1779- 1786.
doi: 10.1016/0038-0717(93)90183-C |
|
Hommel R, Siegwolf R, Zavadlav S, et al. 2016. Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biology, 18(5): 785−796. | |
Hu J X, Huang C D, Zhou S X, et al. Nitrogen addition to soil affects microbial carbon use efficiency: Meta-analysis of similarities and differences in 13C and 18O approaches. Global Change Biology, 2022, 28 (16): 4977- 4988.
doi: 10.1111/gcb.16226 |
|
Indorf C, Dyckmans J, Khan K S, et al. Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates. Biology and Fertility of Soils, 2011, 47 (4): 387- 396.
doi: 10.1007/s00374-011-0545-5 |
|
Jennifer P, Mary K F. Using stable isotopes to explore root-microbe-mineral interactions in soil. Rhizosphere, 2017, 3, 244- 253.
doi: 10.1016/j.rhisph.2017.04.016 |
|
Joergensen R G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54 (5): 559- 568.
doi: 10.1007/s00374-018-1288-3 |
|
Jost D I, Indorf C, Joergensen, et al. Determination of microbial biomass and fungal and bacterial distribution in cattle faeces. Soil Biology and Biochemistry, 2011, 43 (6): 1237- 1244.
doi: 10.1016/j.soilbio.2011.02.013 |
|
Kallenbach C M, Frey S D, Grandy A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, 2016, 7 (1): 13630.
doi: 10.1038/ncomms13630 |
|
Khan K S, Mack R, Castillo X, et al. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma, 2016, 271, 115- 123.
doi: 10.1016/j.geoderma.2016.02.019 |
|
Klink S, Keller A B, Wild A J, et al. Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biology and Biochemistry, 2022, 168, 108634.
doi: 10.1016/j.soilbio.2022.108634 |
|
Kuzyakov Y, Cheng W. Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant and Soil, 2004, 263, 85- 99.
doi: 10.1023/B:PLSO.0000047728.61591.fd |
|
Lemanski K, Scheu S. Incorporation of 13C labelled glucose into soil microorganisms of grassland: effects of fertilizer addition and plant functional group composition. Soil Biology and Biochemistry, 2014, 69, 38- 45.
doi: 10.1016/j.soilbio.2013.10.034 |
|
Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25 (11): 3578- 3590.
doi: 10.1111/gcb.14781 |
|
Liang C, Pedersen J A, Balser T C. Aminoglycoside antibiotics may interfere with microbial amino sugar analysis. Journal of Chromatography A, 2009, 1216 (27): 5296- 5301.
doi: 10.1016/j.chroma.2009.05.010 |
|
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2 (8): 17105.
doi: 10.1038/nmicrobiol.2017.105 |
|
Lindsey K M, Liang C, Rota W, et al. Vertical distribution and pools of microbial residues in tropical forest soils formed from distinct parent materials. Biogeochemistry, 2009, 92 (1/2): 83- 94. | |
Ma T, Zhu S S, Wang Z H, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 2018, 9 (1): 3480.
doi: 10.1038/s41467-018-05891-1 |
|
Malik K A, Bhatti N A, Kauser F. Effect of soil salinity on decomposition and humification of organic matter by some cellulolytic fungi. Mycologia, 2018, 71 (4): 811- 820. | |
Maria L G Z, Mike M. An appraisal of methods for linking environmental processes to specific microbial taxa. Reviews in Environmental Science and Bio/Technology, 2010, 9 (2): 153- 185.
doi: 10.1007/s11157-010-9205-8 |
|
Mayali X, Weber P K, Brodie E L, et al. High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. The ISME Journal, 2012, 6 (6): 1210- 1221.
doi: 10.1038/ismej.2011.175 |
|
Mayali X, Weber P K, Nuccio E, et al. Chip-SIP: stable isotope probing analyzed with rRNA-targeted microarrays and NanoSIMS. Methods in Molecular Biology, 2019, 2046, 71- 87. | |
Mayali X, Weber P K, Pett R J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiology Ecology, 2013, 83 (2): 402- 412.
doi: 10.1111/j.1574-6941.12000.x |
|
Nicole M V D, Bouwmeester H J. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends in Plant Science, 2016, 21 (3): 256- 265.
doi: 10.1016/j.tplants.2016.01.008 |
|
Niculina M, Florin M, Peter K W, et al. Tracking microbial interactions with NanoSIMS. Current Opinion in Biotechnology, 2016, 41, 114- 121.
doi: 10.1016/j.copbio.2016.06.007 |
|
Niggemann J, Schubert C J. Sources and fate of amino sugars in coastal Peruvian sediments. Geochimica et Cosmochimica Acta, 2006, 70 (9): 2229- 2237.
doi: 10.1016/j.gca.2006.02.004 |
|
Nottingham A T, Griffiths H, Chamberlain P M, et al. Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 2009, 42 (3): 183- 190.
doi: 10.1016/j.apsoil.2009.03.003 |
|
Nuccio E E, Hodge A, Pett R J, et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 2013, 15 (6): 1870- 1881.
doi: 10.1111/1462-2920.12081 |
|
Ogle K. Hyperactive soil microbes might weaken the terrestrial carbon sink. Nature, 2018, 560 (7716): 32- 33.
doi: 10.1038/d41586-018-05842-2 |
|
Orson R A, Howes B L. 1992. Salt marsh development studies at Waquoit Bay, Massachusetts: influence of geomorphology on long-term plant community structure. Estuarine, Coastal and Shelf Science, 35(5): 453−471. | |
Pang R, Xu X L, Cui X Y, et al. In-situ 13CO2 labeling to trace carbon fluxes in plant-soil-microorganism systems: review and methodological guideline. Rhizosphere, 2021, 20, 100441.
doi: 10.1016/j.rhisph.2021.100441 |
|
Paul K I, Polgase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation. Forest Ecology and Management, 2002, 168 (1): 241- 257. | |
Pett-Ridge J, Weber P K. NanoSIP: NanoSIMS Applications for Microbial Biology. Methods in Molecular Biology, 2022, 2349, 191- 136. | |
Philip W R, Matthias C R, Kevin P F, et al. Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia-International Journal of Soil Biology, 2006, 50 (3): 275- 280. | |
Poorter H, Niklas K, Reich P, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193 (1): 30- 50.
doi: 10.1111/j.1469-8137.2011.03952.x |
|
Radajewski S, Ineson P, Parekh N R, et al. Stable-isotope probing as a tool in microbial ecology. Nature, 2000, 403 (6770): 646- 649.
doi: 10.1038/35001054 |
|
Robertson I, Switsur V R, Carter A H C, et al. Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in east England. Geophysical Research Letters, 1997, 102 (16): 19507- 19516. | |
Ruehr N K, Offermann C A, Gessler A, et al. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytologist, 2009, 184 (4): 950- 961.
doi: 10.1111/j.1469-8137.2009.03044.x |
|
Rui X, Zheng W L, Xu Y H, et al. Active assimilators of soluble microbial products produced by wastewater anammox bacteria and their roles revealed by DNA-SIP coupled to metagenomics. Environment International, 2022, 164, 107265.
doi: 10.1016/j.envint.2022.107265 |
|
Runion G B, Entry J A, Prior S A, et al. Tissue chemistry and carbon allocation in seedings of Pinus palustris subjected to elevated atmospheric CO2 and water stress. Tree Physiology, 1999, 19 (4): 329- 335. | |
Sangster A, Knight D, Farrell R, et al. Repeat-pulse 13CO2 labeling of canola and field pea: implications for soil organic matter studies. Rapid Communications in Mass Spectrometry, 2010, 24 (19): 2791- 2798.
doi: 10.1002/rcm.4699 |
|
Schimel J P, Schaeffer S M. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012, 3, 348. | |
Sradnick A, Ingold M, Marold J, et al. Impact of activated charcoal and tannin amendments on microbial biomass and residues in an irrigated sandy soil under arid subtropical conditions. Biology and Fertility of Soils, 2014, 50 (1): 95- 103.
doi: 10.1007/s00374-013-0837-z |
|
Studer M S, Siegwolf R T W, Abiven S. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13CO2 labelling techniques. Biogeosciences, 2014, 11 (6): 1637- 1648.
doi: 10.5194/bg-11-1637-2014 |
|
Tans P P, Fung I Y, Takahashi T. Observational contrains on the global atmospheric CO2 budget. Science, 1990, 247 (4949): 1431- 1438.
doi: 10.1126/science.247.4949.1431 |
|
Urey H C. The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 1947, 247 (4949): 562- 581. | |
Wali M K, Evrendilek F, West T O, et al. Assessing terrestrial ecosystem sustainability: usefulness of regional carbon and nitrogen models. Nature and Resources, 1999, 35 (4): 21- 33. | |
Wang B R, An S S, Liang C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology Biochemistry, 2022, 162, 108422. | |
Wang C, Masoudi A, Wang M, et al. Community structure and diversity of the microbiomes of two microhabitats at the root-soil interface: implications of meta-analysis of the root-zone soil and root endosphere microbial communities in Xiong’an new area. Canadian Journal of Microbiology, 2020a, 66 (11): 1- 18. | |
Wang X X, Zhang W, Zhou F, et al. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biology and Biochemistry, 2020b, 142 (3): 107723. | |
Warren C R. Simultaneous efflux and uptake of metabolites by roots of wheat. Plant and Soil, 2016, 406 (1/2): 359- 374. | |
Xu Z Z, Zhou X G S, Wang Y H. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant and Soil, 2007, 301 (1): 87- 97. | |
Yang J, Masoudi A, Li H, et al. Microbial community structure and niche differentiation under different health statuses of Pinus bungeana in the Xiong’an new area in China. Frontiers in Microbiology, 2022, 13, 913349.
doi: 10.3389/fmicb.2022.913349 |
|
Yang Z L, Jiang L, Su F L, et al. Nighttime warming enhances drought resistance of plant communities in a temperate steppe. Scientific Reports, 2016, 6 (1): 23267.
doi: 10.1038/srep23267 |
|
Yeon J S, Aaron F D. Seasonal and canopy height variation in n-alkanes and their carbon isotopes in a temperate forest. Organic Geochemistry, 2018, 116, 23- 34.
doi: 10.1016/j.orggeochem.2017.10.015 |
|
Yoshitaka U, John E H, Margaret M B, et al. Soil properties and presence of plants affect the temperature sensitivity of carbon dioxide production by soils. Plant and Soil, 2010, 337 (1/2): 375- 387. | |
Zang H G, Xiao M L, Wang Y D, et al. Allocation of assimilated carbon in paddies depending on rice age, chase period and N fertilization: experiment with 13CO2 labelling and literature synthesis. Plant and Soil: An International Journal on Plant-Soil Relationships, 2019, 445 (3): 113- 123. | |
Zhang C L. Stable carbon isotopes of lipid biomarkers: analysis of metabolites and metabolic fates of environmental microorganisms. Current Opinion in Biotechnology, 2002, 13 (1): 25- 30.
doi: 10.1016/S0958-1669(02)00280-X |
|
Zhu X f, Jackson R D, DeLucia E H, et al. The soil microbial carbon pump: from conceptual insights to empirical assessments. Global Change Biology, 2020, 26 (11): 6032- 6039.
doi: 10.1111/gcb.15319 |
[1] | 杨阳,王宝荣,孙慧,周媛媛,乔江波,宋怡,张萍萍,李自民,王云强,安韶山. 地球关键带土壤微生物介导有机碳转化研究进展[J]. 林业科学, 2024, 60(7): 165-174. |
[2] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[3] | 韩新生,刘广全,许浩,董立国,郭永忠,安钰,万海霞,王月玲. 宁夏黄土区典型坡面表层土壤有机碳含量的空间变化特征及尺度效应[J]. 林业科学, 2024, 60(1): 19-31. |
[4] | 简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径[J]. 林业科学, 2023, 59(3): 12-20. |
[5] | 游巍斌,李颖,周艳,何东进. 武夷山国家公园马尾松林改为茶园后影响表层土壤碳含量的林缘效应[J]. 林业科学, 2023, 59(10): 41-49. |
[6] | 胡海清,罗碧珍,罗斯生,魏书精,王振师,李小川,刘菲. 林火干扰对森林生态系统碳库的影响研究进展[J]. 林业科学, 2020, 56(4): 160-169. |
[7] | 胡宗达,刘世荣,刘兴良,罗明霞,胡璟,李亚非,余昊,欧定华,吴德勇. 川西亚高山3种天然次生林土壤有机碳氮组分特征[J]. 林业科学, 2020, 56(11): 1-11. |
[8] | 王志康, 许晨阳, 耿增超, 刘莉丽, 侯琳, 杜璨, 王强, 吕东唯. 基于扣除根系体积新方法的秦岭辛家山2种林分土壤有机碳密度特征[J]. 林业科学, 2019, 55(6): 133-141. |
[9] | 卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5): 11-19. |
[10] | 程瑞梅, 王娜, 肖文发, 沈雅飞, 刘泽彬. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018, 54(7): 130-136. |
[11] | 杜满义, 封焕英, 范少辉, 苏文会, 毛超, 唐晓鹿, 刘广路. 闽西毛竹林不同施肥处理下土壤有机碳含量垂直分布与季节动态[J]. 林业科学, 2017, 53(3): 12-20. |
[12] | 字洪标, 向泽宇, 王根绪, 阿的鲁骥, 王长庭. 青海不同林分土壤微生物群落结构(PLFA)[J]. 林业科学, 2017, 53(3): 21-32. |
[13] | 李鑫, 陈先刚, 白明锐, 李风格. 宣威市退耕还林柳杉林地土壤有机碳含量及活性组分的林龄变化[J]. 林业科学, 2017, 53(1): 11-19. |
[14] | 沈一凡, 钱进芳, 郑小平, 袁紫倩, 黄坚钦, 温国胜, 吴家森. 山核桃中心产区林地土壤肥力的时空变化特征[J]. 林业科学, 2016, 52(7): 1-12. |
[15] | 李翀, 周国模, 施拥军, 周宇峰, 张宇鹏, 沈利芬, 范叶青, 沈振明. 不同经营措施对毛竹林土壤有机碳的影响[J]. 林业科学, 2015, 51(4): 26-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||