|
党宏忠, 冯金超, 韩 辉. 沙地樟子松边材液流速率的方位差异特征. 林业科学, 2020, 56 (1): 29- 37.
doi: 10.11707/j.1001-7488.20200104
|
|
Dang H Z, Feng J C, Han H. Characteristics of azimuthal variation of sap flux density in Pinus sylvestris var. mongolica grown in sandy land. Scientia Silvae Sinicae, 2020, 56 (1): 29- 37.
doi: 10.11707/j.1001-7488.20200104
|
|
党宏忠, 冯金超, 却晓娥, 等. 晋西黄土区苹果树边材液流速率的方位差异研究. 林业科学研究, 2019, 32 (2): 46- 52.
|
|
Dang H Z, Feng J C, Que X E, et al. Study on azimuthal variation of sap flow velocity of apple trees in Loess Plateau area, western Shanxi province. Forest Research, 2019, 32 (2): 46- 52.
|
|
党宏忠, 杨文斌, 李 卫, 等. 2015. 新疆杨树干液流的径向变化及时滞特征. 生态学报, 35(15): 5110−5120.
|
|
Dang H Z, Yang W B, Li W, et al. 2015. Radial pattern and time lag of sap flow in Populus alba var. pyramidalis. Acta Ecologcia Sinica, 35(15): 5110−5120. [in Chinese]
|
|
党宏忠, 杨文斌, 李 卫, 等. 民勤绿洲二白杨树干液流的径向变化及时滞特征. 应用生态学报, 2014, 25 (9): 2501- 2510.
|
|
Dang H Z, Yang W B, Li W, et al. Radial variation and time lag of sap flow of Populus gansuensis in Minqin oasis, northwest China. Chinese Journal of Applied Ecology, 2014, 25 (9): 2501- 2510.
|
|
国家林业和草原局. 2019. 三北防护林体系建设40年发展报告. 北京: 中国林业出版社, 68−69.
|
|
National Forestry and Grassland Administration. 2019. Report of the 40-years construction general assessment of the Three North Shelterbelt System(TNAP). Beijing: China Forestry Publishing House, 68−69. [in Chinese]
|
|
刘 洋, 王 烨, 王 斐, 等. 宽窄行栽植下毛白杨不同方位树干液流的差异. 中南林业科技大学学报, 2018, 38 (10): 95- 105.
|
|
Liu Y, Wang Y, Wang F, et al. Azimuthal variation in sap flux density of Populus tomentosa under wide and narrow row planting scheme. Journal of Central South University of Forestry and Technology, 2018, 38 (10): 95- 105.
|
|
孟秦倩, 王 健, 张青峰, 等. 黄土山地苹果树树体不同方位液流速率分析. 生态学报, 2013, 33 (11): 3555- 3561.
doi: 10.5846/stxb201203170363
|
|
Meng Q Q, Wang J, Zhang Q F, et al. Directional flow rate determination in trunks of apple trees in China’s loess mountain. Acta Ecologica Sinica, 2013, 33 (11): 3555- 3561.
doi: 10.5846/stxb201203170363
|
|
王瑞辉, 马履一, 李丽萍, 等. 元宝枫树干液流的时空变异性研究. 北京林业大学学报, 2006, (S2): 12- 18.
|
|
Wang R H, Ma L Y, Li L P, et al. Temporal and spacial variations of stem sap flow of Acer truncatum Bunge. Journal of Beijing Forestry University, 2006, (S2): 12- 18.
|
|
徐丹丹, 尹立河, 侯光才, 等. 毛乌素沙地旱柳和小叶杨树干液流密度及其与气象因子的关系. 干旱区研究, 2017, 34 (2): 375- 382.
|
|
Xu D D, Yin L H, Hou G C, et al. Relationships between sap flow densities in tree trunks of Salix matsudana and Populus simonii and meteorological factors in the Mu Us sandland. Arid Zone Research, 2017, 34 (2): 375- 382.
|
|
徐 飞, 杨风亭, 王辉民, 等. 树干液流径向分布格局研究进展. 植物生态学报, 2012, 36 (9): 1004- 1014.
|
|
Xu F, Yang F T, Wang H M, et al. Review of advances in radial patterns of stem sap flow. Chinese Journal of Plant Ecology, 2012, 36 (9): 1004- 1014.
|
|
赵英铭, 刘明虎, 周全来, 等. 绿洲农田防护林单株新疆杨生物量及其根冠比变化. 中国水土保持科学, 2020, 18 (1): 35- 41.
|
|
Zhao Y M, Liu M H, Zhou Q L, et al. Changes in biomass and root-shoot ratio of individual Populus alba var. pyramidalis Bge. in oasis farmland shelterbelt. Science of Soil and Water Conservation, 2020, 18 (1): 35- 41.
|
|
朱教君, 郑 晓. 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 2019, 38 (5): 1600- 1610.
|
|
Zhu J J, Zheng X. The prospects of development of the Three-North Afforestation Program (TNAP): on the basis of the results of the 40-year construction general assessment of the TNAP. Chinese Journal of Ecology, 2019, 38 (5): 1600- 1610.
|
|
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001
|
|
Barbeta A, Mejía-Chang M, Ogaya R, et al. The combined effects of a long‐term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 2015, 21 (3): 1213- 1225.
doi: 10.1111/gcb.12785
|
|
Bryan B A, Gao L, Ye Y, et al. China's response to a national land-system sustainability emergency. Nature, 2018, 559 (7713): 193- 204.
doi: 10.1038/s41586-018-0280-2
|
|
Čermák J, Kučera J, Nadezhdina N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 2004, 18 (5): 529- 546.
doi: 10.1007/s00468-004-0339-6
|
|
Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2 (2): 122- 129.
doi: 10.1038/s41893-019-0220-7
|
|
Cohen Y, Cohen S, Cantuarias-Aviles T, et al. Variations in the radial gradient of sap velocity in trunks of forest and fruit trees. Plant and Soil, 2008, 305 (1/2): 49- 59.
doi: 10.1007/s11104-007-9351-0
|
|
Ford C R, Goranson C E, Mitchell R J, et al. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology, 2004, 24 (9): 941- 950.
doi: 10.1093/treephys/24.9.941
|
|
Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 2000, 100 (4): 291- 308.
doi: 10.1016/S0168-1923(99)00151-3
|
|
Granier A, Biron P, Breda N, et al. Transpiration of trees and forest stands: short and long-term monitoring using sapflow methods. Global Change Biology, 1996, 2 (3): 265- 274.
doi: 10.1111/j.1365-2486.1996.tb00078.x
|
|
IPCC. 2014. Climate change 2013: the physical science basis. London: Cambridge University Press, 1535.
|
|
Klein T. Drought-induced tree mortality: from discrete observations to comprehensive research. Tree Physiology, 2015, 35 (3): 225- 228.
doi: 10.1093/treephys/tpv029
|
|
Komatsu H, Shinohara Y, Kume T, et al. 2016. Does measuring azimuthal variations in sap flux lead to more reliable stand transpiration estimates? Hydrological Processes, 30(13): 2129-2137.
|
|
Köstner B, Granier A, Čermák J. Sapflow measurements in forest stands: methods and uncertainties. Annales des Sciences Forestières, 1998, 55 (1/2): 13- 27.
|
|
Link R M, Fuchs S, Arias Aguilar D, et al. Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agricultural and Forest Meteorology, 2020, 287, 107913.
doi: 10.1016/j.agrformet.2020.107913
|
|
Lu P, Müller W J, Chacko E K. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology, 2000, 20 (10): 683- 692.
doi: 10.1093/treephys/20.10.683
|
|
Molina A J, Aranda X, Carta G, et al. Effect of irrigation on sap flux density variability and water use estimate in cherry (Prunus avium) for timber production: azimuthal profile, radial profile and sapwood estimation. Agricultural Water Management, 2016, 164, 118- 126.
doi: 10.1016/j.agwat.2015.08.019
|
|
Nadezhdina N. Revisiting the heat field deformation (HFD) method for measuring sap flow. iForest-Biogeosciences and Forestry, 2018, 11 (1): 118- 130.
doi: 10.3832/ifor2381-011
|
|
Nadezhdina N, Cermák J, Ceulemans R. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 2002, 22 (13): 907- 918.
doi: 10.1093/treephys/22.13.907
|
|
Shinohara Y, Tsuruta K, Ogura A, et al. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree Physiology, 2013, 33 (5): 550- 558.
doi: 10.1093/treephys/tpt029
|
|
Spicer R, Gartner B L. The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood. Trees, 2001, 15 (4): 222- 229.
doi: 10.1007/s004680100093
|
|
Tateishi M, Kumagai T O, Utsumi Y, et al. Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees, 2008, 22 (1): 23- 30.
doi: 10.1007/s00468-007-0165-8
|
|
Wullschleger S D, King A W. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees. Tree Physiology, 2000, 20 (8): 511- 518.
doi: 10.1093/treephys/20.8.511
|