|
高亚兰, 何苑皞, 李 河. 调控油茶果生刺盘孢 bZIP 转录因子 CfAp1 的生物学功能. 林业科学, 2020, 56 (9): 30- 39.
doi: 10.11707/j.1001-7488.20200904
|
|
Gao Y L, He Y H, Li H. Biological Function bZIP-Type Transcription Factor CfAp1 in Colletotrichum fructicola. Scientia Silvae Sinicae, 2020, 56 (9): 30- 39.
doi: 10.11707/j.1001-7488.20200904
|
|
郭 源, 李 河, 周国英, 等. 自噬相关蛋白 CfAtg8 在果生刺盘孢中的功能分析. 菌物学报, 2021, 40 (3): 592- 602.
|
|
Guo Y, Li H, Zhou G Y, et al. Functional analysis of the autophagy-related protein CfAtg8 in Colletotrichum fructicola. Mycosystema, 2021, 40 (3): 592- 602.
|
|
Chen Y, Wang B, Chen J, et al. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars. Frontiers in Plant Science, 2015, 6, 189.
|
|
Hirata E, Ohya Y, Suzuki K. Atg4 plays an important role in efficient expansion of autophagic isolation membranes by cleaving lipidated Atg8 in Saccharomyces cerevisiae. PLoS ONE, 2017, 12 (7): e0181047.
doi: 10.1371/journal.pone.0181047
|
|
Lang T, Schaeffeler E, Bernreuther D, et al. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. The EMBO Journal, 1998, 17 (13): 3597- 3607.
doi: 10.1093/emboj/17.13.3597
|
|
Li H, Zhou G Y, Liu J A, et al. Population genetic analyses of the fungal pathogen Colletotrichum fructicola on tea-oil trees in China. PLoS ONE, 2016, 11 (6): e0156841.
doi: 10.1371/journal.pone.0156841
|
|
Liu N, Zhou S, Li B, et al. Involvement of the autophagy protein Atg6 in development and virulence in the gray mold fungus Botrytis cinerea. Frontiers in Microbiology, 2021, 2021, 12.
|
|
Liu T B, Liu X H, Lu J P, et al. The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy, 2010, 6 (1): 74- 85.
doi: 10.4161/auto.6.1.10438
|
|
Liu X H, Gao H M, Xu F, et al. Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy, 2012, 8 (10): 1415- 1425.
doi: 10.4161/auto.21274
|
|
Lv W, Wang C, Yang N, et al. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 2017, 7 (1): 1- 12.
doi: 10.1038/s41598-016-0028-x
|
|
Maruyama T, Noda N N. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of Antibiotics, 2018, 71 (1): 72- 78.
doi: 10.1038/ja.2017.104
|
|
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell, 2011a, 147 (4): 728- 741.
doi: 10.1016/j.cell.2011.10.026
|
|
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 2011b, 27, 107- 132.
doi: 10.1146/annurev-cellbio-092910-154005
|
|
Molina L, Kahmann R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell, 19: 2293–2309.
|
|
Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 2007, 130 (1): 165- 178.
doi: 10.1016/j.cell.2007.05.021
|
|
Scherz‐Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO Journal, 2007, 26 (7): 1749- 1760.
doi: 10.1038/sj.emboj.7601623
|
|
Seong K Y, Zhao X, Xu J R, et al. Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genetics and Biology, 2008, 45 (4): 389- 399.
doi: 10.1016/j.fgb.2007.09.002
|
|
Su W, Ma H, Liu C, et al. Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Molecular Biology Reports, 2006, 33 (4): 273- 278.
doi: 10.1007/s11033-006-9011-0
|
|
Torres M A, Dangl J L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 2005, 8, 397- 403.
doi: 10.1016/j.pbi.2005.05.014
|
|
Veneault-Fourrey C, Barooah M, Egan M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 2006, 312 (5773): 580- 583.
doi: 10.1126/science.1124550
|
|
Wang Q, An B, Hou X, et al. Dicer-like proteins regulate the growth, conidiation, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Frontiers in Microbiology, 2018, 8, 2621.
doi: 10.3389/fmicb.2017.02621
|
|
Zhang S, Guo Y, Li S, et al. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree. BMC Genetics, 2019, 20 (1): 1- 9.
doi: 10.1186/s12863-018-0706-8
|
|
Zhang S, Guo Y, Li S, et al. 2022. Histone acetyltransferase CfGcn5-mediated autophagy governs the pathogenicity of Colletotrichum fructicola. mBio, e01956-22.
|
|
Zhou D, Xie M, Bai N, et al. 2020. The autophagy-related gene Aolatg4 regulates hyphal growth, sporulation, autophagosome formation, and pathogenicity in Arthrobotrys oligospora. Frontiers in Microbiology, 11: 592524.
|