林业科学 ›› 2024, Vol. 60 ›› Issue (7): 47-55.doi: 10.11707/j.1001-7488.LYKX20230289
收稿日期:
2023-07-03
出版日期:
2024-07-25
发布日期:
2024-08-19
通讯作者:
吴鹏飞
E-mail:fjwupengfei@126.com
基金资助:
Linxin Li,Guiyun Yang,Haolan Guo,Qiang Dong,Ming Li,Xiangqing Ma,Pengfei Wu*()
Received:
2023-07-03
Online:
2024-07-25
Published:
2024-08-19
Contact:
Pengfei Wu
E-mail:fjwupengfei@126.com
摘要:
目的: 探究繁殖方式对杉木幼苗根系不同序级生物量分配和生长的影响,分析不同繁殖方式培育的杉木幼苗在相似生长环境下的根系生长策略,为杉木幼苗个体根系生长发育研究提供科学依据。方法: 以种子萌发、组织培养和无性扦插等繁殖方式培育1年的杉木幼苗为研究对象,比较杉木幼苗根系不同序级生物量、形态性状和组织碳氮含量的差异,分析根系生物量与不同序级测定指标之间的内在关系,探究杉木幼苗因繁殖方式不同影响根系生长策略的差异性。结果: 1) 不同繁殖方式培育的杉木幼苗根冠比差异达显著水平(P<0.05),表现为扦插苗>实生苗>组培苗。从同一序级生物量分配情况看,扦插苗1级根生物量[每株(0.68±0.13)g]分别是实生苗的4.31倍和组培苗的1.09倍;组培苗2~4级根生物量显著大于实生苗和扦插苗,分别为每株(1.19±0.21)g、(1.63±0.19)g和(1.82±0.27)g,组培苗和扦插苗根系不同序级生物量积累量更大。2) 实生苗通过4级根生长促进1~2级根延伸,其4级根生物量、1~2级根比表面积显著大于组培苗和扦插苗(P<0.05);组培苗和扦插苗1级根平均直径和比根长显著大于实生苗,表现出通过直径增大和长度增加方式增强资源吸收效率的策略。3) 实生苗、组培苗和扦插苗根系不同序级组织C和N含量存在差异,组培苗和扦插苗1~2级根N含量显著高于实生苗(P<0.05),3~4级根N含量显著低于实生苗;组培苗1~4级根C含量显著低于实生苗和扦插苗;组培苗和扦插苗1级根C/N显著小于实生苗。4) 实生苗根系生物量与1级根上的组织N含量、2~3级根上的形态性状、4级根上的形态性状和组织C含量均具有显著关系(P<0.05);对于组培苗、扦插苗而言,根系生物量与1~2级根上的形态性状、3~4级根上的形态性状和组织C含量具有显著关系,体现出根系不同序级在形态构建与资源获取效率间存在的生态权衡关系。结论: 不同繁殖方式培育的杉木幼苗根系发育水平和生长策略存在明显差异,实生苗根系表现出探索寻觅土壤空间资源的生长策略;与之相比,组培苗和扦插苗根系形态构建特征和生长策略更具相似性,表现出增强对已占据空间资源吸收利用效率的生长策略。
中图分类号:
李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55.
Linxin Li,Guiyun Yang,Haolan Guo,Qiang Dong,Ming Li,Xiangqing Ma,Pengfei Wu. Effects of Propagation Methods on Biomass, Morphological Traits and Carbon and Nitrogen Contents of Fine Roots at Different Orders of Chinese Fir Seedlings[J]. Scientia Silvae Sinicae, 2024, 60(7): 47-55.
图5
不同繁殖方式培育的杉木幼苗根系生物量与不同序级形态性状及碳氮含量的相关性分析 a:实生苗Seedling;b:组培苗Tissue culture seedling;c:扦插苗Cutting seedling. *表示P<0.05;**表示P<0.01。* and ** in the figure indicate significant correlations at P<0.05 and P<0.01, respectively. RAD:平均直径Root average diameter; RTD:组织密度Root tissue density; SAR:比表面积Specific root surface area; SRL:比根长Specific root length; N:氮含量Nitrogen content; C:碳含量Carbon content; C/N:碳氮比Carbon nitrogen ratio."
常云妮, 李宝银, 钟全林, 等. 三种功能型林木幼苗生物量分配及其与细根和叶片养分关系. 生态学杂志, 2022, 41 (11): 2090- 2097. | |
Chang Y N, Li B Y, Zhong Q L, et al. Biomass allocation of three functional types of forest tree seedlings and their relationships with nutrients in fine roots and leaves. Chinese Journal of Ecology, 2022, 41 (11): 2090- 2097. | |
杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响. 植物生态学报, 2023, 47 (3): 348- 360.
doi: 10.17521/cjpe.2022.0201 |
|
Du Y D, Yuan X Y, Feng Z Z. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar. Chinese Journal of Plant Ecology, 2023, 47 (3): 348- 360.
doi: 10.17521/cjpe.2022.0201 |
|
国家林业和草原局. 2019. 中国森林资源报告(2014—2018) . 北京: 中国林业出版社, 28-29. | |
State Forestry and Grassland Administration. 2019. China forest resources report (2014—2018). Beijing: China Forestry Publishing House, 28-29. [in Chinese] | |
李 婧, 洪宗文, 熊仕臣, 等. 华西雨屏区不同林龄柳杉人工林的根系形态和碳氮磷化学计量特征. 四川农业大学学报, 2023, 41 (2): 257- 265. | |
Li J, Hong Z W, Xiong S C, et al. The root morphology and C: N: P stoichiometric characteristics of Cryptomeria japonica var. sinensis plantations at different ages in Rainy area of western China. Journal of Sichuan Agricultural University, 2023, 41 (2): 257- 265. | |
李石一宁, 熊德成, 姚晓东, 等. 常绿阔叶林中壳斗科树种细根形态与养分含量的序级变化特征. 生态学杂志, 2022, 41 (5): 833- 840. | |
Li-Shi Y N, Xiong D C, Yao X D, et al. Morphology and nutrient contents of fine roots from different orders in Fagaceae species in an evergreen broad-leaved forest. Chinese Journal of Ecology, 2022, 41 (5): 833- 840. | |
刘运科, 苏 宇, 李德会, 等. 川中丘陵区3个树种的细根形态和功能异质性分析. 西北植物学报, 2016, 36 (5): 1012- 1020.
doi: 10.7606/j.issn.1000-4025.2016.05.1012 |
|
Liu Y K, Su Y, Li D H, et al. Morphological and functional heterogeneity of fine roots among three tree species in the hilly region of central Sichuan. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36 (5): 1012- 1020.
doi: 10.7606/j.issn.1000-4025.2016.05.1012 |
|
马雄忠, 王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征. 生态学报, 2020, 40 (17): 6001- 6008. | |
Ma X Z, Wang X P. Root architecture and adaptive strategy of two desert plants in the Alxa Plateau. Acta Ecologica Sinica, 2020, 40 (17): 6001- 6008. | |
苏 宇, 吴世磊, 贺 维, 等. 弓杠岭不同海拔云杉细根生物量及形态特征. 西北植物学报, 2022, 42 (1): 138- 144.
doi: 10.7606/j.issn.1000-4025.2022.01.0138 |
|
Su Y, Wu S L, He W, et al. Fine root biomass and its morphological characteristics of Picea asperata along an elevation gradient of Gonggang mountains. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42 (1): 138- 144.
doi: 10.7606/j.issn.1000-4025.2022.01.0138 |
|
王 娇, 关 欣, 张伟东, 等. 杉木幼苗生物量分配格局对氮添加的响应. 植物生态学报, 2021, 45 (11): 1231- 1240. | |
Wang J, Guan X, Zhang W D, et al. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings. Chinese Journal of Plant Ecology., 2021, 45 (11): 1231- 1240. | |
吴帆, 熊德成, 周嘉聪, 等. 2022. 增温及隔离降水对杉木幼树细根生物量、形态及养分特征的影响. 热带亚热带植物学报, 30(4): 509-517. | |
Wu F, Xiong D C, Zhou J C, et al. 2022. Effects of Warming and precipitation exclusion on fine root biomass, morphology and nutrient characteristics of Cunninghamia lanceolata saplings. Journal of Tropical and Subtropical Botany. 30(4): 509-517. [in Chinese] | |
熊德成, 黄锦学, 杨智杰, 等. 亚热带六种天然林树种细根养分异质性. 生态学报, 2012, 32 (14): 4343- 4351.
doi: 10.5846/stxb201106280966 |
|
Xiong D C, Huang J X, Yang Z J, et al. Nutrient heterogeneity in fine roots of six subtropical natural tree species. Acta Ecologica Sinica, 2012, 32 (14): 4343- 4351.
doi: 10.5846/stxb201106280966 |
|
闫小莉, 胡文佳, 马远帆, 等. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略. 林业科学, 2020, 56 (2): 1- 11. | |
Yan X L, Hu W J, Ma Y F, et al. Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies. Scientia Silvae Sinicae, 2020, 56 (2): 1- 11. | |
杨 鑫, 张高洁, 姚继周, 等. 水杉人工林细根解剖结构和菌根侵染研究. 南京林业大学学报(自然科学版), 2016, 40 (6): 97- 102. | |
Yang X, Zhang G J, Yao J Z, et al. Study on fine root anatomical structure and mycorrhizal colonization in Metasequoia glyptostroboides plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40 (6): 97- 102. | |
杨 雨, 李芳兰, 包维楷, 等. 川西亚高山11种常见灌木细根形态特征. 应用与环境生物学报, 2020, 26 (6): 1376- 1384. | |
Yang Y, Li F L, Bao W K, et al. Fine-root morphology of common shrubs in the subalpine forests of western Sichuan. Chinese Journal of Applied and Environmental Biology, 2020, 26 (6): 1376- 1384. | |
杨振亚, 周本智, 陈庆标, 等. 2018. 干旱对杉木幼苗根系构型及非结构性碳水化合物的影响. 生态学报, 38(18): 6729-6740. | |
Yang Z Y, Zhou B Z, Chen Q B, et al. 2018. Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata. Acta Ecologica Sinica, 38(18): 6729-6740. [in Chinese] | |
张豪睿, 付 刚. 藏北高寒草甸根系生物量与碳氮分布格局及关联特征. 生态学报, 2021, 41 (9): 3625- 3633. | |
Zhang H R, Fu G. Root biomass, carbon and nitrogen distribution pattern and correlation characteristics of alpine meadow in northern Tibet. Acta Ecologica Sinica, 2021, 41 (9): 3625- 3633. | |
张吉玲, 李明阳, 李 勇, 等. 机械损伤处理杉木无性系萌蘖及内源激素含量差异. 南京林业大学学报(自然科学版), 2021, 45 (2): 153- 158. | |
Zhang J L, Li M Y, Li Y, et al. Effects of mechanical damage treatment on the tillering ability and endogenous hormone content of Chinese fir clones. Jounal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (2): 153- 158. | |
张进如, 闫晓俊, 贾林巧, 等. 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征. 生态学报, 2022, 42 (9): 3716- 3726. | |
Zhang J R, Yan X J, Jia L Q, et al. Morphology and C and N stoichiometry traits of fine roots of nine understory shrubs in subtropical natural evergreen broad-leaved forest. Acta Ecologica Sinica, 2022, 42 (9): 3716- 3726. | |
周永姣, 王满堂, 王钊颖, 等. 亚热带59个常绿与落叶树种不同根序细根养分及化学计量特征. 生态学报, 2020, 40 (14): 4975- 4984. | |
Zhou Y J, Wang M T, Wang Z Y, et al. Nutrient and ecological stoichiometry of different root order fine roots of 59 evergreen and deciduous tree species in subtropical zone. Acta Ecologica Sinica, 2020, 40 (14): 4975- 4984. | |
祝 维, 余立璇, 赵德海, 等. 基于根系发育分级的砂壤土下成熟林木根系构型分析. 植物生态学报, 2019, 43 (2): 119- 130.
doi: 10.17521/cjpe.2018.0269 |
|
Zhu W, Yu L X, Zhao D H, et al. Architectural analysis of root systems of mature trees in sandy loam soils using the root development classification. Chinese Journal of Plant Ecology, 2019, 43 (2): 119- 130.
doi: 10.17521/cjpe.2018.0269 |
|
邹显花, 吴鹏飞, 贾亚运, 等. 杉木根系对不同磷斑块浓度与异质分布的阶段性响应. 植物营养与肥料学报, 2016, 22 (4): 1056- 1063.
doi: 10.11674/zwyf.15076 |
|
Zou X H, Wu P F, Jia Y Y, et al. Periodical response of Chinese fir root to the phosphorus concentrations in patches and heterogeneous distribution in different growing stages. Journal of Plant Nutrition and Fertilizer, 2016, 22 (4): 1056- 1063.
doi: 10.11674/zwyf.15076 |
|
Addo-Danso S D, Defrenne C E, McCormack M L, et al. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology, 2020, 221 (1): 1- 13.
doi: 10.1007/s11258-019-00986-1 |
|
Albrecht U, Bordas M, Lamb B, et al. Influence of propagation method on root architecture and other traits of young citrus rootstock plants. HortScience, 2017, 52 (11): 1569- 1576.
doi: 10.21273/HORTSCI12320-17 |
|
Asaah E K, Wanduku T N, Tchoundjeu Z, et al. 2012. Do propagation methods affect the fine root architecture of African plum (Dacryodes edulis)? Trees, 26(5): 1461−1469. | |
Brunner I, Herzog C, Dawes M A, et al. How tree roots respond to drought. Frontiers in Plant Science, 2015, 6, 547. | |
Cao Y, Li N N, Lin J Q, et al. Root system-rhizosphere soil-bulk soil interactions in different Chinese fir clones based on fungi community diversity change. Frontiers in Ecology and Evolution, 2022, 10, 1028686.
doi: 10.3389/fevo.2022.1028686 |
|
Chen H Y H, Brassard B W. Intrinsic and extrinsic controls of fine root life span. Critical Reviews in Plant Sciences, 2013, 32 (3): 151- 161.
doi: 10.1080/07352689.2012.734742 |
|
Chen W L, Koide R T, Adams T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (31): 8741- 8746. | |
Donovan L A, Maherali H, Caruso C M, et al. The evolution of the worldwide leaf economics spectrum. Trends in Ecology and Evolution, 2011, 26 (2): 88- 95.
doi: 10.1016/j.tree.2010.11.011 |
|
Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants. Science, 2002, 296 (5573): 1689- 1691.
doi: 10.1126/science.1071617 |
|
Greinwald K, Dieckmann L A, Schipplick C, et al. 2021. Vertical root distribution and biomass allocation along proglacial chronosequences in Central Switzerland. Arctic, Antarctic, and Alpine Research, 53(1): 20−34. | |
Guo D L, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a long leaf pine forest. Oecologia, 2004, 140, 450- 457.
doi: 10.1007/s00442-004-1596-1 |
|
Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate species. New Phytologist, 2008, 180 (3): 673- 683.
doi: 10.1111/j.1469-8137.2008.02573.x |
|
Li L X, Deng X H, Zhang T, et al. Propagation methods decide root architecture of Chinese fir: evidence from tissue culturing, rooted cutting and seed germination. Plants, 2022, 11 (19): 2472.
doi: 10.3390/plants11192472 |
|
Li W B, Zhang H X, Huang G Z, et al. Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 2020, 29 (3): 573- 598.
doi: 10.1111/geb.13042 |
|
Liao Y C, McCormack M L, Fan H B, et al. Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China. Plant and soil, 2014, 381 (1): 225- 234. | |
Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013, 112 (2): 347- 357.
doi: 10.1093/aob/mcs293 |
|
Ma H Z, Mo L D, Crowther T W, et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nature Ecology and Evolution, 2021, 5 (8): 1110- 1122.
doi: 10.1038/s41559-021-01485-1 |
|
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555 (7694): 94- 97.
doi: 10.1038/nature25783 |
|
McCormack M L, Dickie L A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207 (3): 505- 518.
doi: 10.1111/nph.13363 |
|
Ostonen L, Lõhmus K, Helmisaari H, et al. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiology, 2007, 27 (11): 1627- 1634.
doi: 10.1093/treephys/27.11.1627 |
|
Pokhrel S, Meyering B, Bowman K, et al. Horticultural attributes and root architectures of field-grown ‘Valencia’ trees grafted on different rootstocks propagated by seed, cuttings, and tissue culture. HortScience, 2021, 56 (2): 163- 172.
doi: 10.21273/HORTSCI15507-20 |
|
Poot P, Lambers H. Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytologist, 2008, 178 (2): 371- 381.
doi: 10.1111/j.1469-8137.2007.02370.x |
|
Portsmuth A, Niinemets Ü. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional Ecology, 2007, 21 (1): 61- 77.
doi: 10.1111/j.1365-2435.2006.01208.x |
|
Pregitzer K S, DeForest J L, Burton A J, et al. Fine root architecture of nine North American trees. Ecological Monographs, 2002, 72 (2): 293- 309.
doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 |
|
Reich P B. The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102 (2): 275- 301.
doi: 10.1111/1365-2745.12211 |
|
Wei X, Band L R, Kumpf R P, et al. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science, 2016, 351 (6217): 384- 387. | |
Wen Z H, White P J, Shen J B, et al. Linking root exudation to belowground economic traits for resource acquisition. New Phytologist, 2022, 233 (4): 1620- 1635.
doi: 10.1111/nph.17854 |
|
Wu P F, Ma X Q, Tigabu M, et al. Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research, 2011, 41 (2): 228- 234.
doi: 10.1139/X10-198 |
|
Zou X H, Wu P F, Chen N L, et al. Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 2015, 45 (4): 402- 410.
doi: 10.1139/cjfr-2014-0384 |
[1] | 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响[J]. 林业科学, 2024, 60(6): 50-59. |
[2] | 刘元玺,王丽娜,吴俊文,李世民. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 2024, 60(6): 71-85. |
[3] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[4] | 贾辉,朱敏,余再鹏,万晓华,傅彦榕,王思荣,邹秉章,黄志群. 亚热带树种在未成林造林地的凋落物量和周转与叶片性状的关系[J]. 林业科学, 2024, 60(1): 12-18. |
[5] | 李晓燕,段爱国,张建国. 不同产区杉木人工林初植密度对优势高生长的影响[J]. 林业科学, 2023, 59(8): 22-29. |
[6] | 屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114. |
[7] | 王烨,李广德,刘国彬,廖婷,郭丽琴,姚砚武,曹均. 毛白杨人工林物候特征和生长对施肥的可塑性响应[J]. 林业科学, 2023, 59(5): 32-40. |
[8] | 赵文菲,曹小玉,谢政锠,庞一凡,孙亚萍,李际平,莫永俊,袁达. 基于结构方程模型的杉木公益林林分空间结构评价[J]. 林业科学, 2022, 58(8): 76-88. |
[9] | 李舟阳,陆文玲,钱旺,黄奕孜,林二培,黄华宏,童再康. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 2022, 58(7): 73-81. |
[10] | 陈嘉琪,赵光宇,李仰龙,董玉红,厚凌宇,焦如珍. 杉木人工林土壤磷素形态及含量的林龄变化[J]. 林业科学, 2022, 58(5): 10-17. |
[11] | 史月冬,郑宏,叶代全,施季森,边黎明. 杉木生长性状的空间与竞争效应及其对遗传参数估计的影响[J]. 林业科学, 2022, 58(5): 75-84. |
[12] | 王淑真,梁晶晶,包明琢,潘菲,周垂帆. 不同林龄杉木林土壤磷形态与解磷菌变化[J]. 林业科学, 2022, 58(2): 58-69. |
[13] | 陈敏,赖华燕,郑姗姗,李明,马祥庆,吴鹏飞. 磷胁迫下外源乙烯对杉木幼苗生长及磷素利用的影响[J]. 林业科学, 2021, 57(7): 43-50. |
[14] | 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性[J]. 林业科学, 2021, 57(5): 165-175. |
[15] | 臧颢,刘洪生,黄锦程,张祖栋,欧阳勋志,宁金魁. 竞争和气候及其交互作用对杉木人工林胸径生长的影响[J]. 林业科学, 2021, 57(3): 39-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||