欢迎访问林业科学,今天是

林业科学 ›› 2024, Vol. 60 ›› Issue (7): 40-46.doi: 10.11707/j.1001-7488.LYKX20220731

• • 上一篇    下一篇

近20年来肥城市林地时空变化及其驱动因子

李祎1(),单博文1,杨丽1,覃钧1,石雷1,2,*   

  1. 1. 国家林业和草原局/北京市共建竹藤科学与技术重点实验室 国际竹藤中心 北京 100102
    2. 滇南竹林生态系统国家定位观测研究站 沧源 677400
  • 收稿日期:2022-10-28 出版日期:2024-07-25 发布日期:2024-08-19
  • 通讯作者: 石雷 E-mail:3496864562@qq.com
  • 基金资助:
    国际竹藤中心基本业务费专项基金(1632018010);国家重点研发计划 (2016YFD0600902);国家自然科学基金项目(31300177)。

Spatio-Temporal Change of Forest Lands of Feicheng City and Its Driving Factorsin the Past 20 Years

Yi Li1(),Bowen Shan1,Li Yang1,Jun Qin1,Lei Shi1,2,*   

  1. 1. Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology International Center for Bamboo and Rattan Beijing 100102
    2. National Positioning Observation and Research Station of Bamboo Forest Ecosystem in Southern Yunnan Province Cangyuan 677400
  • Received:2022-10-28 Online:2024-07-25 Published:2024-08-19
  • Contact: Lei Shi E-mail:3496864562@qq.com

摘要:

目的: 提取肥城市不同时期的林地信息,分析林地时空变化特征,挖掘林地面积变化的驱动因子,为区域林地资源监测、管理和可持续发展提供参考。方法: 以肥城市为研究区,基于2000—2020年21期Landsat遥感数据,首先对Landsat遥感数据进行辐射定标、大气校正等预处理,采用决策树分类法对遥感数据进行土地类型解译,提取林地相关信息;然后揭示近20年来林地时空变化特征;最后构建新的环境压力模型(IPAT),分析林地面积变化的驱动因子。结果: 基于决策树规则提取的肥城市林地信息用户精度达94.7%,具有较高的解译精度。解译结果表明,近20年来林地面积在波动性中呈增长趋势,净增加17 463.54 hm2;增加的林地主要分布在肥城市中部和北部矿区,减少的林地则集中分布于中部林地的边缘部分,最终呈现中部和北部集中分布、其他地区零星分布的空间特征。改进的环境压力模型(IPAT)表明,林地禀赋价值是肥城市林地面积变化的主要驱动因子(贡献率超80.3%),富裕程度是次要驱动因素,二者贡献比例超过改进IPAT模型4个因子总贡献率的92%;林业产值对国内生产总值的贡献率和人口数量对林地面积变化的影响相对较小。结论: 基于决策树分类法对遥感数据解译能够准确提取肥城市林地信息并监测林地动态变化,林地禀赋价值对林地面积变化有显著影响。

关键词: 林地, Landsat数据, 林地禀赋价值, 变化, IPAT模型, 驱动因子

Abstract:

Objective: Monitoring forest resources and its spatio-temporal changes using time-series remote sensing datasets and extracting the driving factors has a great significance in achieving scientific management and efficient utilization of regional forest land resources. Method: This study identified Feicheng City, Shandong Province as a case study, extracted the distribution information of land type from 2000 to 2020 by decision tree classification based on the 21-period Landsat remote sensing datasets, which was preprocessed by radiation calibration and atmospheric correction, and also analyzed spatio-temporal change and its driving factors of forest based on the renovated IPAT model. Result: The extracted forest land information based on decision tree classification achieved a high accuracy, which yield more than 94.7% of user’s accuracy. In the past 20 years, the area of forest land fluctuated with a net increase of 17 463.54 hm2, and the increased forest land was concentrated in the central parts and northern mining area of Feicheng City, while the decreased forest land was centralized in the edge part of the central forest land, thus indicating the spatial characteristics of concentrated distribution in the central and northern parts and sporadic distribution in other areas. The renovated IPAT model showed that the endowment value of forest land was the main driving factor for the area change in Feicheng City ( the contribution larger than 80.3%), and the degree of affluence was the secondary driving factor. The contribution of both factors exceeded 92% of the total contribution of the four factors in the renovated IPAT model. In contrast, forest industry and the population posed little influence. Conclusion: Forest resources could be accurately extracted and monitored based on decision tree classification, and the endowment value of forest land has significant influences on the spatio-temporal evolution of forest land.

Key words: forest land, Landsat dataset, forest land endowment value, change, IPAT model, driving factors

中图分类号: