|
高 添, 朱教君, 张金鑫, 等. 基于新一代信息技术的温带森林生态系统碳通量精准计量. 数据与计算发展前沿, 2023, 5 (2): 60- 72.
|
|
Gao T, Zhu J J, Zhang J X, et al. Estimation of carbon flux of a temperate forest ecosystem based on next-generation information technologies. Frontiers of Data & Computing, 2023, 5 (2): 60- 72.
|
|
李永亮, 沈 康, 张怀清, 等. 基于CAVE2的森林虚拟仿真系统应用研究. 林业资源管理, 2019, (2): 123- 131, 136.
|
|
Li Y L, Shen K, Zhang H Q, et al. Forest virtual simulation system based on CAVE2. Forest and Grassland Resources Research, 2019, (2): 123- 131, 136.
|
|
李增元, 张怀清, 陆元昌. 2003. 数字林业建设与进展. 中国农业科技导报,(2): 7−9.
|
|
Li Z Y, Zhang H Q, Lu Y C. 2003. Establishment and development of digital forestry. Review of China Agricultural Science and Technology,(2): 7−9. [in Chinese]
|
|
于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨. 中国科学院院刊, 2022, 37 (4): 423- 434.
|
|
Yu G R, Hao T X, Zhu J X, et al. Discussion on action strategies of China’s carbon peak and carbon neutrality. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 423- 434.
|
|
朱念福, 张怀清, 崔泽宇, 等. 2021. 基于肢体动作交互的森林经营作业模拟研究. 林业科学研究, 34(5): 95−103.
|
|
Zhu N F, Zhang H Q, Cui Z Y, et al. 2021. Simulation of operation for forest management based on body action interaction. Forest Research, 34(5): 95−103. [in Chinese]
|
|
朱教君, 高 添, 张金鑫, 等. 以“塔群”为核心的“立体-全息”森林生态系统信息化观测研究方法体系. 生态学杂志, 2023, 42 (12): 3050- 3054.
|
|
Zhu J J, Gao T, Zhang J X, et al. Methods of “three-dimensional and holographic”observation for forest ecosystems centered on“multi-tower”. Chinese Journal of Ecology, 2023, 42 (12): 3050- 3054.
|
|
朱教君, 刘世荣. 2007. 森林干扰生态研究. 北京: 中国林业出版社.
|
|
Zhu J J, Liu S R. 2007. Ecological study of forest disturbance. Beijing: China Forestry Publishing House. [in Chinese]
|
|
Batavia C, Nelson M P. 2016. Conceptual ambiguities and practical challenges of ecological forestry: a critical review. Journal of Forestry , 114: 572−581.
|
|
Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, 320, 1444- 1449.
doi: 10.1126/science.1155121
|
|
Buonocore L, Yates J, Valentini R. 2022. A proposal for a forest digital twin framework and its perspectives. Forests, 13(4): 498.
|
|
Chapin F S, Matson P A, Vitousek P M. 2011. Principles of terrestrial ecosystem ecology. New York: Springer, 157−181.
|
|
Chen Q D, Gao T, Zhu J J, et al. 2022. Individual tree segmentation and tree height estimation using leaf-off and leaf-on UAV-LiDAR data in dense deciduous forests. Remote Sensing, 14(12): 2787.
|
|
Curtis P S, Gough C M. Forest aging, disturbance and the carbon cycle. New Phytologist, 2018, 219 (4): 1188- 1193.
doi: 10.1111/nph.15227
|
|
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4015- 4020.
|
|
Harris N L, Gibbs D A, Baccini A. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11 (3): 234- 240.
doi: 10.1038/s41558-020-00976-6
|
|
Leach M, Scoones I. Carbon forestry in west Africa: the politics of models, measures and verification processes. Global Environmental Change, 2013, 23 (5): 957- 967.
doi: 10.1016/j.gloenvcha.2013.07.008
|
|
O'Hara K L. 2016. What is close-to-nature silviculture in a changing world? Forestry: An International Journal of Forest Research, 89(1): 1−6.
|
|
Perry D A. 1998. The scientific basis of forestry. Annual Review of Ecology, Evolution, and Systematics, 29: 435−466.
|
|
Pommerening A, Murphy S T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry: An International Journal of Forest Research, 2004, 77 (1): 27- 44.
doi: 10.1093/forestry/77.1.27
|
|
Qiu H Q, Zhang H Q, Lei K X, et al. 2023a. Forest digital twin: a new tool for forest management practices based on spatio-temporal data, 3D simulation engine, and intelligent interactive environment. Computers and Electronics in Agriculture, 215: 108416.
|
|
Qiu H Q, Zhang H Q, Lei K X, et al. 2023b. A new tree-level multi-objective forest harvest model (MO-PSO): Integrating neighborhood indices and PSO algorithm to improve the optimization effect of spatial structure. Forests, 14: 441.
|
|
Tang S Z, Tang L N, Shao G F. Digital forestry research in China. Science in China Series E: Technological Sciences, 2006, 49 (S1): 1- 8.
doi: 10.1007/s11431-006-8101-5
|
|
Yun T, Li J, Ma L F. 2024. Status, advancements and prospects of deep learning methods applied in forest studies. International Journal of Applied Earth Observation and Geoinformation, 131: 103938.
|
|
Yu Y, Gao T, Zhu J J, et al. Terrestrial laser scanning-derived canopy interception index for predicting rainfall interception. Ecohydrology, 2020, 13, e2212.
doi: 10.1002/eco.2212
|
|
Wang J S, Zhang H Q, Liu Y, et al. 2024a. Tree-level Chinese fir detection using UAV RGB imagery and YOLO-DCAM. Remote Sensing, 16: 335.
|
|
Wang L L, Zhang H Q, Lei K X, et al. A novel forest dynamic growth visualization method by incorporating spatial structural parameters based on convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024b, 17, 3471- 3488.
doi: 10.1109/JSTARS.2023.3342445
|