林业科学 ›› 2024, Vol. 60 ›› Issue (6): 60-70.doi: 10.11707/j.1001-7488.LYKX20230426
郑梦杰1,2(),谢炜3,马行聪1,2,黄坚钦2,4,彭丽媛1,2,*,秦华1,2
收稿日期:
2023-09-13
出版日期:
2024-06-25
发布日期:
2024-07-16
通讯作者:
彭丽媛
E-mail:2021603042054@stu.zafu.edu.cn
基金资助:
Mengjie Zheng1,2(),Wei Xie3,Xingcong Ma1,2,Jianqin Huang2,4,Liyuan Peng1,2,*,Hua Qin1,2
Received:
2023-09-13
Online:
2024-06-25
Published:
2024-07-16
Contact:
Liyuan Peng
E-mail:2021603042054@stu.zafu.edu.cn
摘要:
目的: 研究山核桃根系分泌物对外源溶磷菌生长和活化土壤磷能力的影响,进一步阐明微生物和植物的相互作用,也为缓解山核桃林地磷限制提供科学依据和技术支撑。方法: 利用液体摇瓶和土壤培养的方式,以2株具有有机磷活化能力的菌株[产酶溶杆菌(CQ18)和多黏类芽孢杆菌(QP22)]为试验材料,研究山核桃根系分泌物对其生长繁殖和活化磷的影响。结果: 液体培养时,添加山核桃根系分泌物对菌株CQ18生长无显著影响,但促进菌株QP22繁殖。接种后,有机磷液体培养液(以卵磷脂为唯一磷源)的酸、中、碱性磷酸酶活性显著增强;可溶性磷含量呈先增加后减少趋势,并均显著高于未接种处理。接种菌株CQ18的处理中,平均可溶性磷含量以低浓度山核桃根系分泌物处理最高(41.93 mg·L?1),未添加山核桃根系分泌物处理最低(37.01 mg·L?1);接种菌株QP22处理中,中浓度山核桃根系分泌物处理最高(30.14 mg·L?1),高浓度山核桃根系分泌物处理最低(18.09 mg·L?1)。接种土壤中菌体数量和土壤有效磷含量及酸性磷酸酶活性呈先增后减趋势,并均高于未接种处理。培养结束时,与未添加山核桃根系分泌物处理相比,含有山核桃根系分泌物处理的供试菌株数量最多,酸性磷酸酶活性显著增强,但其处理间有效磷含量无显著差异。结论: 菌株CQ18和QP22通过分泌磷酸酶水解卵磷脂、活化土壤中难溶性磷,并且山核桃根系分泌物能促进其生长繁殖和矿化有机磷。因此,菌株CQ18和QP22在山核桃林地应用中具有巨大潜力。
中图分类号:
郑梦杰,谢炜,马行聪,黄坚钦,彭丽媛,秦华. 山核桃根系分泌物对溶磷菌生长及活化土壤磷的影响[J]. 林业科学, 2024, 60(6): 60-70.
Mengjie Zheng,Wei Xie,Xingcong Ma,Jianqin Huang,Liyuan Peng,Hua Qin. Effects of Root Exudation from Carya cathayensis on the Growth and Phosphorus Activation Ability of Phosphorus-Mobilization Bacteria[J]. Scientia Silvae Sinicae, 2024, 60(6): 60-70.
鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil agricultural chemistry analysis. Beijing: China Agriculture Press. [in Chinese] | |
陈丹梅. 2020. 产酶溶杆菌新株Lysobacter enzymogenes LE16的促生防病作用及机理. 重庆: 西南大学. | |
Cheng D M. 2020. Functions and mechanisms of the new Lysobacter enzymogenes strain LE16 in plant growth promoting and disease biocontrol. Chongqing: Southwest University. [in Chinese] | |
邓先智, 类延宝, 沈 杰, 等. 模拟根系分泌物输入对高寒退化草地土壤微生物残体的影响. 生态学报, 2022, 42 (20): 8311- 8321. | |
Deng X Z, Lei Y B, Shen J, et al. Effects of simulated root exudates input on soil microbial residues in the degraded alpine grassland. Acta Ecologica Sinica, 2022, 42 (20): 8311- 8321. | |
杜思垚, 方娅婷, 鲁剑巍. 根系分泌物对作物养分吸收利用的影响研究进展. 华中农业大学学报, 2023, 42 (2): 147- 157. | |
Du S Y, Fang Y T, Lu J W. Progress on effects of root exudates on nutrient uptake and utilization of crops. Journal of Huazhong Agricultural University, 2023, 42 (2): 147- 157. | |
韩玲玲. 2021. 黄顶菊根系分泌物对芽孢杆菌功能的影响及其主效化感物质的鉴定. 保定: 河北大学. | |
Han L L. 2021. Effects of root exudates of Flaveria bidentis on the function of bacillus and identification of its main allelochemicals. Baoding: Hebei University. [in Chinese] | |
贾峥嵘, 郝佳丽, 郝艳芳, 等. 4种促生菌剂对甘薯生长及土壤肥力的影响. 干旱区资源与环境, 2022, 36 (9): 166- 172. | |
Jia Z R, Hao J L, Hao Y F, et al. Effects of four growth-promoting bacteria on the growth of sweet potato and soil fertility. Journal of Arid Land Resources and Environment, 2022, 36 (9): 166- 172. | |
李佳佳, 樊妙春, 上官周平. 植物根系分泌物主要生态功能研究进展. 植物学报, 2020, 55 (6): 788- 796.
doi: 10.11983/CBB20036 |
|
Li J J, Fan M C, Shanggaun Z P. Research advances in the main ecological functions of root exudates. Chinese Bulletin of Botany, 2020, 55 (6): 788- 796.
doi: 10.11983/CBB20036 |
|
刘 海, 王玉书, 焦玉洁, 等. 三种土壤条件下紫茎泽兰根际的酶活性及细菌群落状况. 生态学报, 2018, 38 (23): 8455- 8465. | |
Liu H, Wang Y S, Jiao Y J, et al. Enzyme activities and bacterial community in the rhizosphere of Eupatorium adenophorum under different soil conditions. Acta Ecologica Sinica, 2018, 38 (23): 8455- 8465. | |
刘耀辉, 盛可银, 罗建荣, 等. 溶磷菌混施对土壤微生物群落及毛竹生长的影响. 江西农业大学学报, 2023, 45 (2): 298- 310. | |
Liu Y H, Sheng K Y, Luo J R, et al. Effects of phosphorus solubilizing bacterial compound suspensions on growth of moso bamboo(Phyllostachys edulis)and soil microbial community structures. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45 (2): 298- 310. | |
刘志中, 陈汉章, 杨 娇. 不同浓度根系分泌物调控植物土壤微生物群落结构研究. 林业调查规划, 2022, 47 (6): 20- 25,30.
doi: 10.3969/j.issn.1671-3168.2022.06.005 |
|
Liu Z Z, Chen H Z, Yang J. Regulation of plant soil microbial community structure by different concentrations of root exudates. Forest Inventory and Planning, 2022, 47 (6): 20- 25,30.
doi: 10.3969/j.issn.1671-3168.2022.06.005 |
|
罗 兴, 冯海超, 夏丽明, 等. 根际促生解淀粉芽胞杆菌SQR9对香蕉根系分泌物响应的转录组分析. 南京农业大学学报, 2019, 42 (1): 102- 110.
doi: 10.7685/jnau.201804025 |
|
Luo X, Feng H C, Xia L M, et al. Transcriptomic profiling of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to banana root exudates. Journal of Nanjing Agricultural University, 2019, 42 (1): 102- 110.
doi: 10.7685/jnau.201804025 |
|
马 莹, 程莹莹, 石孝均, 等. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用. 微生物学报, 2023, 63 (12): 4502- 4521. | |
Ma Y, Cheng Y Y, Shi X J, et al. Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers. Acta Microbiologica Sinica, 2023, 63 (12): 4502- 4521. | |
宋雪萍. 2021. 撕裂蜡孔菌(Ceriporia lacerata HG2011)的溶磷促生作用研究. 重庆: 西南大学. | |
Song X P. 2021. Mobilization of soil phosphorus and promotion of plant growth by Ceriporia lacerata HG2011. Chongqing: Southwest University. [in Chinese] | |
陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展. 生态学报, 2023, 43 (11): 4390- 4399. | |
Tao D X, Gao Y Z. Advances on the strategies of soil phosphate solubilizing microorganisms to promote plant phosphorus uptake. Acta Ecologica Sinica, 2023, 43 (11): 4390- 4399. | |
王大欣, 张 丹, 初少华, 等. 巨大芽孢杆菌NCT-2冻干菌剂的制备及冻干保护剂响应面优化. 食品工业科技, 2016, 37 (11): 156- 160,164. | |
Wang D X, Zhang D, Chu S H, et al. Preparation of Bacillus megaterium NCT-2 freeze-dried agent by using response surface methodology. Science and Technology of Food Industry, 2016, 37 (11): 156- 160,164. | |
王玉书, 刘 海, 李 佳, 等. 黄连须根浸提液对无机磷细菌的负化感效应. 土壤学报, 2018, 55 (4): 977- 986.
doi: 10.11766/trxb201712250571 |
|
Wang Y S, Liu H, Li J, et al. Negative allelopathic effects of extract of Coptis chinensis hair root on inorganic phosphorus-dissolving bacteria. Acta Pedologica Sinica, 2018, 55 (4): 977- 986.
doi: 10.11766/trxb201712250571 |
|
王玉书, 刘 海, 袁 玲. 空心莲子草根系分泌物对无机磷细菌的负化感效应. 土壤学报, 2017, 54 (6): 1486- 1496.
doi: 10.11766/trxb201705180092 |
|
Wang Y S, Liu H, Yuan L. Negative allelopathic effects of root exudate of Alternanthera philoxeroides on growth and phosphate dissolution of inorganic phosphorus bacteria. Acta Pedologica Sinica, 2017, 54 (6): 1486- 1496.
doi: 10.11766/trxb201705180092 |
|
徐舰航, 钱思源, 王舒哲, 等. 低磷胁迫对薄壳山核桃幼苗生长发育的影响. 果树学报, 2022, 39 (8): 1432- 1442. | |
Xu J H, Qian S Y, Wang S Z, et al. Effects of low phosphorus stress on the growth and development in pecans(Carya illinoinensis). Journal of Fruit Science, 2022, 39 (8): 1432- 1442. | |
张 燕, 强 薇, 罗如熠, 等. 氮磷添加对土壤微生物生长、周转及碳利用效率的影响研究进展. 应用与环境生物学报, 2022, 28 (2): 526- 534. | |
Zhang Y, Qiang W, Luo R Y, et al. Effects of nitrogen and phosphorus addition on soil microbial growth, turnover, and carbon use efficiency: a review. Chinese Journal of Applied and Environmental Biology, 2022, 28 (2): 526- 534. | |
Babalola O O. Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Scientific Research and Essays, 2012, 7 (28): 2431- 2439. | |
Behera B C, Singdevsachan S K, Mishra R R, et al. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove: a review. Biocatalysis and Agricultural Biotechnology, 2014, 3 (2): 97- 110.
doi: 10.1016/j.bcab.2013.09.008 |
|
Catford J G, Staehelin C, Larose G, et al. Systemically suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization in alfalfa split-root systems. Plant and Soil, 2006, 285 (1): 257- 266. | |
Cui Y X, Bing H J, Fang L C, et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 2019, 338, 118- 127.
doi: 10.1016/j.geoderma.2018.11.047 |
|
Efthymiou A, Jensen B, Jakobsen I. The roles of mycorrhiza and Penicillium inoculants in phosphorus uptake by biochar-amended wheat. Soil Biology and Biochemistry, 2018, 127, 168- 177.
doi: 10.1016/j.soilbio.2018.09.027 |
|
Fukami K, Kawai K, Takeuchi S, et al. Effect of water content on the glass transition temperature of calcium maltobionate and its application to the characterization of non-arrhenius viscosity behavior. Food Biophysics, 2016, 11 (4): 410- 416.
doi: 10.1007/s11483-016-9455-2 |
|
Haney C H, Samuel B S, Bush J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 2015, 1 (6): 15051.
doi: 10.1038/nplants.2015.51 |
|
Hou E Q, Luo Y Q, Kuang Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11 (1): 637.
doi: 10.1038/s41467-020-14492-w |
|
Khan A A, Jilani G, Akhtar M S, et al. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences, 2009, 1 (1): 48- 58. | |
Kour D, Rana K L, Kaur T, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review. Pedosphere, 2021, 31 (1): 43- 75.
doi: 10.1016/S1002-0160(20)60057-1 |
|
Ma Y H, Li L J, Tian H X, et al. Transcriptional analysis of the laccase-like gene from Burkholderia cepacia BNS and expression in Escherichia coli. Applied Microbiology and Biotechnology, 2019, 103 (2): 747- 760.
doi: 10.1007/s00253-018-9468-5 |
|
Menezes-Blackburn D, Giles C, Darch T, et al. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil, 2018, 427 (1): 5- 16. | |
Meier I C, Finzi A C, Phillips R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 2017, 106, 119- 128.
doi: 10.1016/j.soilbio.2016.12.004 |
|
Naher U A, Othman R, Shamsuddin Z H, et al. Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. International Journal of Agriculture and Biology, 2009, 11 (5): 586- 590. | |
Nannipieri P, Giagnoni L, Landi L, et al. Role of phosphatase enzymes in soil. Springer Berlin Heidelberg, 2011, 26, 215- 243. | |
Peng L Y, Huang J G, Huang C Y, et al. Genetic sequencing provides insights into molecular and genetic mechanisms of Lysobacter enzymogenes HYP18 involved in soil organic nitrogen and phosphorus mobilization and plant growth promotion. Plant and Soil, 2023, 491 (1): 525- 542. | |
Shrivastava M, Srivastava P C, Souza S F. 2018. Phosphate-solubilizing microbes: diversity and phosphates solubilization mechanism. Role of Rhizospheric Microbes in soil. Singapore: Springer. | |
Sinsabaugh R L, Hill B H, Follstad Shah J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462, 795- 798.
doi: 10.1038/nature08632 |
|
Strickland M S, McCulley R L, Nelson J A, et al. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities. Frontiers in Microbiology, 2015, 6, 817. | |
White P, Hammond J. 2008. The ecophysiology of plant-phosphorus interactions. Berlin, Germany: Springer Netherlands. | |
Yin H J, Li Y F, Xiao J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 2013, 19 (7): 2158- 2167.
doi: 10.1111/gcb.12161 |
|
Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6 (1): 156.
doi: 10.1186/s40168-018-0537-x |
|
Zhu H, Bing H J, Wu Y H, et al. 2021. Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau. Catena, 203: 1−10. |
[1] | 曹明奡,张菲,黄光明,刘瑞成,刘利平,吴强盛,徐永杰. 丛枝菌根真菌对低磷胁迫下核桃幼苗根系磷吸收的影响及机制[J]. 林业科学, 2023, 59(12): 117-124. |
[2] | 李敏, 赵熙州, 王好运, 卢中科, 丁贵杰. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响[J]. 林业科学, 2022, 58(7): 63-72. |
[3] | 陈嘉琪,赵光宇,李仰龙,董玉红,厚凌宇,焦如珍. 杉木人工林土壤磷素形态及含量的林龄变化[J]. 林业科学, 2022, 58(5): 10-17. |
[4] | 王妍,冯金玲,吴小慧,黄蓝明,吴娟,陈宇,杨志坚. 施肥对闽楠幼苗光合碳固定的影响[J]. 林业科学, 2022, 58(5): 40-52. |
[5] | 蒋铮, 于倩楠, 乔明锋, 肖娟, 张子良, 尹华军. 云杉幼树根系分泌物对2种草本植物种子萌发和幼苗生长的影响[J]. 林业科学, 2019, 55(6): 160-166. |
[6] | 沈一凡, 钱进芳, 郑小平, 袁紫倩, 黄坚钦, 温国胜, 吴家森. 山核桃中心产区林地土壤肥力的时空变化特征[J]. 林业科学, 2016, 52(7): 1-12. |
[7] | 崔翠;蔡靖;张硕新. 核桃根系分泌物化感物质的分离与鉴定[J]. , 2013, 49(2): 54-60. |
[8] | 王艳丽;李正楠;李会平;冉隆贤. 桉树抗青枯病的鉴定技术[J]. 林业科学, 2011, 47(6): 101-107. |
[9] | 王延平;王华田;姜岳忠;陈鸿鹰;倪桂萍. 氮磷亏缺条件下杨树幼苗根系分泌酚酸的动态[J]. 林业科学, 2011, 47(11): 73-79. |
[10] | 耿玉清;余新晓;岳永杰;牛丽丽;. 北京山地森林的土壤养分状况[J]. 林业科学, 2010, 46(5): 169-175. |
[11] | 焦如珍;彭玉红. 海南岛热带木本豆科植物根瘤菌的溶磷作用[J]. 林业科学, 2010, 46(10): 1-5. |
[12] | 梁军 王媛 焦一杰 张星耀. 根际微生态调节对杨树根系活力及土壤有效 P 转化的效应[J]. 林业科学, 2009, 12(1): 102-106. |
[13] | 冀宪领 盖英萍 马建平 牟志美. 桑树景天庚酮糖-1,7-二磷酸酶基因的克隆、原核表达与植物表达载体的构建[J]. 林业科学, 2008, 44(3): 62-69. |
[14] | 焦如珍 杨承栋 孙启武. 细菌肥料菌株对无效磷的转化利用[J]. 林业科学, 2005, 41(4): 194-198. |
[15] | 谢钰容 周志春 廖国华 金国庆 陈跃. 低磷胁迫下马尾松种源酸性磷酸酶活性差异[J]. 林业科学, 2005, 41(3): 58-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||