林业科学 ›› 2024, Vol. 60 ›› Issue (6): 1-12.doi: 10.11707/j.1001-7488.LYKX20220894
张翱1,2(),李文婷1,王天祥1,武耀星1,雷刚3,漆良华1,*
收稿日期:
2022-12-19
出版日期:
2024-06-25
发布日期:
2024-07-16
通讯作者:
漆良华
E-mail:bailu2569157164@163.com
基金资助:
Ao Zhang1,2(),Wenting Li1,Tianxiang Wang1,Yaoxing Wu1,Gang Lei3,Lianghua Qi1,*
Received:
2022-12-19
Online:
2024-06-25
Published:
2024-07-16
Contact:
Lianghua Qi
E-mail:bailu2569157164@163.com
摘要:
目的: 在我国北、中和南亚热带研究毛竹林土壤易氧化有机碳的垂直分布规律和纬度分布格局,揭示其区域分异的主要影响因素,为毛竹林固碳增汇、经营管理和土壤有机碳库稳定性维持提供科学依据。方法: 通过实地调查和试验分析揭示亚热带不同区域毛竹林土壤易氧化有机碳含量沿土层和纬度的变化规律,运用地理探测器中因子探测、交互探测和风险探测分析土壤易氧化有机碳区域分异的影响因素。结果: 1) 不同区域的毛竹林土壤易氧化有机碳含量均随土层加深而降低,但其占总有机碳的比例均随土层加深而升高;0~60 cm土层的易氧化有机碳含量表现为北亚热带(5.16 g·kg?1)>南亚热带(4.86 g·kg?1)>中亚热带(4.56 g·kg?1),土壤碳库稳定性随纬度降低而降低。2) 年均气温对毛竹林土壤易氧化有机碳含量变化的解释程度最高,q值为0.376~0.452;其次为海拔(q=0.392,P<0.001);林分因子中凋落物厚度对不同土层的易氧化有机碳含量影响显著,毛竹林生物量对30~60 cm 土层的易氧化有机碳含量的影响较显著(q=0.308,P<0.01)。3) 各因子间交互效应均表现为协同作用,毛竹林生物量与凋落物厚度交互作用在0~10 cm土层最强(q=0.704);毛竹林生物量与年均气温交互效应在10~30和30~60 cm土层最强,q值分别为0.601和0.732,均为较强的非线性增强作用。4)易氧化有机碳含量在部分年均气温范围之间存在显著差异,以年均气温17~19 ℃时最高(5.03~12.39 g·kg?1)、15~17 ℃时最低(2.69~6.20 g·kg?1);各土层易氧化有机碳含量在海拔700~900 m时均为最高;毛竹林生物量为75~90 t· hm?2时,0~10 cm土层易氧化有机碳含量达最高。结论: 总体而言,毛竹林土壤易氧化有机碳含量均随土层加深而降低,其占总有机碳含量的比例呈现北亚热带<中亚热带<南亚热带的纬度分布格局,因而在低纬度地区应实施轻扰经营技术,减少土壤扰动从而提高毛竹林土壤有机碳的稳定性。年均气温和海拔是影响毛竹林土壤易氧化有机碳含量的关键因子,毛竹林生物量对各土层易氧化有机碳含量均具有不同程度的影响且与气候、地形因子协同作用明显,气候、地形与林分状况的单因子作用及其交互效应共同主导着毛竹林土壤易氧化有机碳含量的区域分异特征。本研究为毛竹林土壤活性有机碳稳定性维持及固碳增汇潜力发挥提供了科学依据。
中图分类号:
张翱,李文婷,王天祥,武耀星,雷刚,漆良华. 毛竹林土壤易氧化有机碳区域分异及影响因素[J]. 林业科学, 2024, 60(6): 1-12.
Ao Zhang,Wenting Li,Tianxiang Wang,Yaoxing Wu,Gang Lei,Lianghua Qi. Regional Differentiation and It’s Influencing Factors of Soil Easily-oxidized Organic Carbon in Subtropical Phyllostachys edulis Forests[J]. Scientia Silvae Sinicae, 2024, 60(6): 1-12.
表1
样地基本概况"
区域 Region | 采样地点 Sample site | 样地编号 Sample plot No. | 经度Longitude | 纬度 Latitude | 年均气温 Mean annual temperature/℃ | 年均降 水量 Mean annual precipitation/mm | 海拔Elevation/m | 坡度 Slope/(°) | 坡位 Slope position | 坡向 Slope orientation | 平均胸径 Mean diameter at breast height/cm | 平均竹高 Mean bamboo height/m | 林分密度 Stand density/ hm?2 |
北亚热带Northern subtropics | 河南信阳 Xinyang, Henan | 1 | 114°4′32″ | 31°49′5″ | 17.47 | 910 | 480 | 28 | 中Middle | 东北Northeast | 6.86±1.92 | 11.16±2.45 | 6 325 |
2 | 114°4′36″ | 31°49′3″ | 500 | 39 | 上Up | 北 North | 4.76±1.48 | 7.05±1.50 | 4 525 | ||||
3 | 114°4′36″ | 31°49′6″ | 540 | 28 | 下Down | 西南Southwest | 7.61±1.71 | 10.78±1.92 | 3 625 | ||||
4 | 114°4′22″ | 31°49′4″ | 440 | 5 | 下Down | 西北Northwest | 8.52±1.84 | 10.89±1.98 | 4 725 | ||||
浙江安吉Anji, Zhejiang | 5 | 119°40′34″ | 30°34′25″ | 14.83 | 942.5 | 110 | 46 | 下Down | 西 West | 8.83±1.90 | 9.27±1.79 | 3 275 | |
6 | 119°36′09″ | 30°32′19″ | 290 | 31 | 上Up | 北 North | 8.89±2.00 | 9.18±1.95 | 2 300 | ||||
7 | 119°34′45″ | 30°28′36″ | 370 | 48 | 上Up | 东 East | 7.51±1.51 | 8.46±1.47 | 2 650 | ||||
8 | 119°34′50″ | 30°28′40″ | 720 | 22 | 中Middle | 南 South | 7.50±1.17 | 9.11±1.72 | 2 300 | ||||
中亚热带 Middlen subtropics | 四川长宁 Changning, Sichuan | 9 | 105°1′19″ | 28°27′44″ | 14.20 | 1 144.4 | 900 | 4 | 上Up | 东 East | 9.27±1.49 | 12.31±1.40 | 5 250 |
10 | 105°0′46″ | 28°27′36″ | 890 | 3 | 上Up | 西南Southwest | 9.32±1.44 | 12.59±1.77 | 4 300 | ||||
11 | 105°1′13″ | 28°28′17″ | 875 | 1 | 上Up | 西南Southwest | 9.20±1.30 | 13.94±1.69 | 3 150 | ||||
12 | 105°1′35″ | 28°27′51″ | 845 | 3 | 上Up | 东 East | 8.75±1.42 | 13.41±2.46 | 4 075 | ||||
湖南桃江 Taojiang, Hunan | 13 | 112°5′29″ | 28°19′36″ | 16.51 | 1 175.0 | 240 | 29 | 中Middle | 东 East | 12.17±1.85 | 13.89±1.59 | 2 900 | |
14 | 112°4′58″ | 28°19′25″ | 290 | 5 | 上Up | 东 East | 9.37±1.96 | 12.46±2.46 | 2 875 | ||||
15 | 112°4′11″ | 28°19′47″ | 300 | 28 | 上Up | 东南Southeast | 11.08±1.57 | 16.51±1.61 | 3 075 | ||||
16 | 112°4′03″ | 28°19′40″ | 180 | 43 | 中Middle | 西 West | 10.27±2.09 | 14.04±2.15 | 3 025 | ||||
南亚热带Southern subtropics | 惠州龙门 Longmen,Huizhou | 17 | 113°50′54″ | 23°38′20″ | 20.05 | 1 490.8 | 550 | 35 | 下Down | 东南Southeast | 8.79±1.73 | 13.28±1.95 | 4 150 |
18 | 113°51′28″ | 23°38′07″ | 530 | 37 | 中Middle | 北 North | 9.78±1.64 | 14.69±1.78 | 3 850 | ||||
19 | 113°50′50″ | 23°37′55″ | 590 | 14 | 下Down | 北 North | 9.59±1.65 | 15.05±2.03 | 2 850 | ||||
20 | 113°50′34″ | 23°38′03″ | 540 | 16 | 下Down | 南 South | 8.91±1.52 | 14.63±1.77 | 4 000 | ||||
广州从化Conghua, Guangzhou | 21 | 113°48′02″ | 23°44′22″ | 20.2 | 1 510.2 | 190 | 4 | 上Up | 东 East | 8.52±1.73 | 12.49±1.82 | 4 300 | |
22 | 113°48′01″ | 23°44′22″ | 260 | 19 | 中Middle | 北 North | 8.53±1.56 | 12.79±1.68 | 3 875 | ||||
23 | 113°48′23″ | 23°44′12″ | 340 | 18 | 中Middle | 北 NorthN | 7.08±2.61 | 11.89±1.89 | 3 975 | ||||
24 | 113°48′25″ | 23°43′41″ | 380 | 30 | 中Middle | 东北Northeast | 8.07±1.88 | 13.41±2.63 | 2 525 |
表2
交互作用类型判别"
作用类型Interaction type | q值比较Comparation of q value |
非线性增强Nonlinear enhancement | q(X1∩X2)>q(X1)+q(X2) |
独立Independence | q(X1∩X2) =q(X1)+q(X2) |
双因子增强Bifactor enhancement | q(X1∩X2)>Max[q(X1), q(X2)] |
单因子非线性减弱Single-factor nonlinear antagonism | Min[q(X1), q(X2) ]< q(X1∩X2)<Max[q(X1),q(X2)] |
非线性减弱Nonlinear antagonism | q(X1∩X2)<Min[q(X1), q(X2)] |
图3
毛竹林土壤易氧化有机碳含量影响因子交互作用q值(n=72) ★代表两因子间交互作用为非线性增强,颜色越深表示交互作用q值越大。★indicates that the interaction between the two factors is nonlinear enhancement. A darker color indicates a larger q value for the interaction. MAP:年均降水量Mean annual precipitation;MAT:年平均气温Mean annual temperature;SRI:Solar radiation intensity;Ele:海拔Elevation;Slo:坡度Slope;SP:坡位Slope position;LT:凋落物厚度Litter thickness;Bio:林分生物量Stand biomass."
陈 曦, 张彦军, 邹俊亮, 等. 秦岭太白山森林表层土壤有机碳分布特征. 森林与环境学报, 2022, 42 (3): 244- 252. | |
Chen X, Zhang Y J, Zou J L, et al. Distribution characteristics of forest surface soil organic carbon in Taibai Mountains of Qinling. Journal of Forest and Environment, 2022, 42 (3): 244- 252. | |
范志平, 王 琼, 李法云. 辽东山地不同森林类型土壤有机碳季节动态及其驱动因子. 生态学杂志, 2018, 37 (11): 3220- 3230. | |
(Fan Z P, Wang Q, Li F Y. Seasonal dynamics of soil organic carbon in different forest types and its driving factors in mountainous region of eastern Liaoning. Chinese Journal of Ecology, 2018, 37 (11): 3220- 3230. | |
辜 翔, 张仕吉, 项文化, 等. 中亚热带4种森林类型土壤活性有机碳的季节动态特征. 植物生态学报, 2016, 40 (10): 1064- 1076.
doi: 10.17521/cjpe.2015.0412 |
|
Gu X, Zhang S J, Xiang W H, et al. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China. Chinese Journal of Plant Ecology, 2016, 40 (10): 1064- 1076.
doi: 10.17521/cjpe.2015.0412 |
|
国家林业和草原局编制. 2019. 中国森林资源报告(2014−2018). 北京: 中国林业出版社, 3−21. | |
National Forestry and Grassland Administration. 2019. National forest resources statistics (2014−2018). Beijing: China Forestry Publishing House: 3−21. [in Chinese] | |
国家林业局. 2000. 中华人民共和国林业行业标准: 森林土壤分析方法. 北京: 中国标准出版社. | |
National Forestry Administration. 2000. People’s Republic of China (PRC) forestry industry standard: forest soil analysis method. Beijing: Standards Press of China. [in Chinese] | |
柯娴氡, 张 璐, 苏志尧. 粤北亚热带山地森林土壤有机碳沿海拔梯度的变化. 生态与农村环境学报, 2012, 28 (2): 151- 156. | |
Ke X D, Zhang L, Su Z Y. Variation of soil organic carbon content along altitudinal gradient in subtropical montane forest in North Guangdong. Journal of Ecology and Rural Environment, 2012, 28 (2): 151- 156. | |
李 翀, 周国模, 施拥军, 等. 不同经营措施对毛竹林土壤有机碳的影响. 林业科学, 2015, 51 (4): 26- 35. | |
Li C, Zhou G M, Shi Y J, et al. Effects of different management measures on soil carbon in bamboo forest ecosystems. Scientia Silvae Sinicae, 2015, 51 (4): 26- 35. | |
李 理, 朱文博, 刘俊杰, 等. 宝天曼自然保护区土壤有机碳异质性及其影响因素. 长江流域资源与环境, 2020, 29 (3): 687- 695. | |
Li L, Zhu W B, Liu J J, et al. Soil organic carbon heterogeneity and its influencing factors in Baotianman nature reserve. Resources and Environment in the Yangtze Basin, 2020, 29 (3): 687- 695. | |
刘江伟, 徐海东, 林同岳, 等. 海涂围垦区不同林分土壤活性有机碳垂直变化特征. 林业科学研究, 2022, 35 (3): 18- 26. | |
Liu J W, Xu H D, Lin T Y, et al. Vertical variation patterns in soil labile organic carbon in different stands in coastal reclamation area. Forest Research, 2022, 35 (3): 18- 26. | |
柳淑蓉. 2012. UV-B辐射和水分对秸秆降解及土壤有机碳转化的影响. 武汉: 华中农业大学. | |
Liu S R. 2012. Effects of UV-B radiation and moisture on straw decomposition and soil organic carbon turnover. Wuhan: Huazhong Agricultural University.[in Chinese] | |
刘鑫铭, 饶惠玲, 丁新新, 等. 不同混交类型对毛竹林土壤有机碳和土壤呼吸的影响. 应用与环境生物学报, 2021, 27 (1): 71- 80. | |
Liu X M, Rao H L, Ding X X, et al. Effects of different mixed forest types on soil organic carbon and soil respiration in Phyllostachys edulis forest. Chinese Journal of Applied and Environmental Biology, 2021, 27 (1): 71- 80. | |
卢 慧, 丛 静, 薛亚东, 等. 海拔对神农架表层土壤活性有机碳含量的影响. 林业科学, 2014, 50 (8): 162- 167. | |
Lu H, Cong J, Xue Y D, et al. Effects of elevation on surface layer soil active organic carbon content in Shennongjia Nature Reserve. Scientia Silvae Sinicae, 2014, 50 (8): 162- 167. | |
聂阳意, 王海华, 李晓杰, 等. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征. 应用生态学报, 2018, 29 (3): 748- 756. | |
Nie Y Y, Wang H H, Li X J, et al. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China. Chinese Journal of Applied Ecology, 2018, 29 (3): 748- 756. | |
漆良华, 杜满义, 范少辉, 等. 湘中丘陵区毛竹纯林、竹杉混交林土壤有机碳库动态. 生态学杂志, 2012, 31 (12): 3038- 3043. | |
Qi L H, Du M Y, Fan S H, et al. Dynamics of soil organic carbon pool in Phyllostachy edulis forest and P. edulis-Cunninghamia lanceolata mixed forest in hilly regions of central Hunan, Southern China. Chinese Journal of Ecology, 2012, 31 (12): 3038- 3043. | |
漆良华, 范少辉, 杜满义, 等. 湘中丘陵区毛竹纯林、毛竹-杉木混交林土壤有机碳垂直分布与季节动态. 林业科学, 2013a, 49 (3): 17- 24.
doi: 10.11707/j.1001-7488.20130303 |
|
Qi L H, Fan S H, Du M Y, et al. Vertical distribution and seasonal dynamics of soil organic carbon in Phyllostachy edulis plantations and P. edulis-Cunninghamia lanceolata mixed forests in the hilly region of central Hunan, southern China. Scientia Silvae Sinicae, 2013a, 49 (3): 17- 24.
doi: 10.11707/j.1001-7488.20130303 |
|
漆良华, 毛 超, 杜满义, 等. 湘中丘陵区不同经营类型毛竹林土壤有机碳垂直分布与季节动态. 东北林业大学学报, 2013b, 41 (6): 38- 40,79. | |
Qi L H, Mao C, Du M Y, et al. Vertical distribution and seasonal dynamics of soil organic carbon of Phyllostachy edulis forests under different managing patterns in the hilly region of central Hunan Province, Southern China. Journal of Northeast Forestry University, 2013b, 41 (6): 38- 40,79. | |
商泽安, 宋涵晴, 舒 琪, 等. 海南岛甘什岭低地次生雨林土壤有机碳及影响因素. 生态环境学报, 2021, 30 (2): 297- 304. | |
Shang Z A, Song H Q, Shu Q, et al. Soil organic carbon distribution and the influencing factors in the tropical lowland secondary rainforest of ganshiling, Hainan Island. Ecology and Environmental Sciences, 2021, 30 (2): 297- 304. | |
王春燕, 何念鹏, 吕瑜良. 中国东部森林土壤有机碳组分的纬度格局及其影响因子. 生态学报, 2016, 36 (11): 3176- 3188. | |
Wang C Y, He N P, Lü Y L. Latitudinal patterns and factors affecting different soil organic carbon fractions in the eastern forests of China. Acta Ecologica Sinica, 2016, 36 (11): 3176- 3188. | |
王 棣, 耿增超, 佘 雕, 等. 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征. 应用生态学报, 2014, 25 (6): 1569- 1577. | |
Wang D, Geng Z C, She D, et al. Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains. Chinese Journal of Applied Ecology, 2014, 25 (6): 1569- 1577. | |
王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72 (1): 116- 134.
doi: 10.11821/dlxb201701010 |
|
Wang J F, Xu C D. Geodetector: principle and prospective. Acta Geographica Sinica, 2017, 72 (1): 116- 134.
doi: 10.11821/dlxb201701010 |
|
王淑平, 周广胜, 高素华, 等. 中国东北样带土壤活性有机碳的分布及其对气候变化的响应. 植物生态学报, 2003, 27 (6): 780- 785.
doi: 10.3321/j.issn:1005-264X.2003.06.008 |
|
Wang S P, Zhou G S, Gao S H, et al. Distribution of soil labile carbon along the Northeast China transect (nect) and its response to climatic change. Acta Phytoecologica Sinica, 2003, 27 (6): 780- 785.
doi: 10.3321/j.issn:1005-264X.2003.06.008 |
|
王艳丹, 何光熊, 宋子波, 等. 酸角人工林不同坡位土壤有机碳及其活性组分的变化. 土壤, 2020, 52 (6): 1256- 1262. | |
Wang Y D, He G X, Song Z B, et al. Study on soil organic carbon and its active fractions at different slope sites of Tamarindus indica plantation. Soils, 2020, 52 (6): 1256- 1262. | |
吴克华, 苏维词, 贾真真, 等. 基于GIS与地理探测器的旅游地空间分布格局及驱动力分析: 以贵州为例. 地理科学, 2022, 42 (5): 841- 850. | |
Wu K H, Su W C, Jia Z Z, et al. Spatial distribution pattern and driving force of tourist destinations in Guizhou Province based on GIS and geodetector. Scientia Geographica Sinica, 2022, 42 (5): 841- 850. | |
徐 侠, 王 丰, 栾以玲, 等. 武夷山不同海拔植被土壤易氧化碳. 生态学杂志, 2008, 27 (7): 1115- 1121. | |
Xu X, Wang F, Luan Y L, et al. Soil readily oxidizable carbon along an elevation gradient of Wuyi Mountains in southeastern China. Chinese Journal of Ecology, 2008, 27 (7): 1115- 1121. | |
杨传宝, 倪惠菁, 苏文会, 等. 经营措施对毛竹林土壤不同组分有机碳、氮及化学结构的影响. 应用生态学报, 2020, 31 (1): 25- 34. | |
Yang C B, Ni H J, Su W H, et al. Effects of management measures on organic carbon, nitrogen and chemical structure of different soil fractions in Phyllostachys edulis plantations. Chinese Journal of Applied Ecology, 2020, 31 (1): 25- 34. | |
张厚喜, 庄舜尧, 季海宝, 等. 我国南方毛竹林生态系统碳储量的估算. 土壤, 2014, 46 (3): 413- 418. | |
Zhang H X, Zhuang S Y, Ji H B, et al. Estimating carbon storage of moso bamboo forest ecosystem in Southern China. Soils, 2014, 46 (3): 413- 418. | |
张彦军, 郁耀闯, 牛俊杰, 等. 秦岭太白山北坡土壤有机碳储量的海拔梯度格局. 生态学报, 2020, 40 (2): 629- 639. | |
Zhang Y J, Yu Y C, Niu J J, et al. The elevational patterns of soil organic carbon storage on the northern slope of Taibai Mountain of Qinling. Acta Ecologica Sinica, 2020, 40 (2): 629- 639. | |
张 哲, 王邵军, 李霁航, 等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应. 生态学报, 2019, 39 (17): 6257- 6263. | |
Zhang Z, Wang S J, Li J H, et al. Response of soil readily oxidizable carbon to community succession of Xishuangbanna tropical forests. Acta Ecologica Sinica, 2019, 39 (17): 6257- 6263. | |
Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 1997, 79 (3): 439- 449.
doi: 10.2307/3546886 |
|
Allen D E, Pringle M J, Bray S, et al. 2013. What determines soil organic carbon stocks in the grazing lands of north-eastern Australia? Soil Research, 51(8): 695−706. | |
Augusto L, Boča A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications, 2022, (13): 1097. | |
Bangroo S A, Najar G R, Rasool A. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena, 2017, (158): 63- 68. | |
Barreto P A B, Gama-Rodrigues E F, Gama-Rodrigues A C, et al. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil. Agroforestry Systems, 2011, 81 (3): 213- 220.
doi: 10.1007/s10457-010-9300-4 |
|
Blair G J, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46 (7): 1459- 1466.
doi: 10.1071/AR9951459 |
|
Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 1999, 123 (1): 81- 90.
doi: 10.1016/S0378-1127(99)00017-1 |
|
Cao F, Ge Y, Wang J F. Optimal discretization for geographical detectors-based risk assessment. GIScience & Remote Sensing, 2013, 50 (1): 78- 92. | |
Dahlgren R A, Boettinger J L, Huntington G L, et al. Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma, 1997, 78 (3/4): 207- 236. | |
Ding S N, Xue S, Liu G B. Effects of long-term fertilization on oxidizable organic carbon fractions on the Loess Plateau, China. Journal of Arid Land, 2016, 8 (4): 579- 590.
doi: 10.1007/s40333-016-0007-x |
|
Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263 (5144): 185- 190.
doi: 10.1126/science.263.5144.185 |
|
Franzluebbers A J, Haney R L, Honeycutt C W, et al. Climatic influences on active fractions of soil organic matter. Soil Biology and Biochemistry, 2001, 33 (7/8): 1103- 1111. | |
Guo W, Cherubini P, Zhang J, et al. Soil physicochemical properties determine leaf traits but not size traits of moso bamboo (Phyllostachys edulis). Environmental Research Letters, 2022, 17 (11): 114061.
doi: 10.1088/1748-9326/aca039 |
|
Hassink J. Relationship between the amount and the activity of the microbial biomass in Dutch grassland soils: composition of the fumigation-incubation method and the substrate-induced respiration method. Soil Biology and Biochemistry, 1993, 25 (5): 530- 538. | |
Li S Y, Zhang A, Song H Q, et al. The dominant factor affecting soil organic carbon in subtropical Phyllostachys edulis forests is climatic factors rather than soil physicochemical properties. Forests, 2023, 14 (5): 958.
doi: 10.3390/f14050958 |
|
Magill A H, Aber J D. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biology and Biochemistry, 2000, 32 (5): 597- 601.
doi: 10.1016/S0038-0717(99)00186-8 |
|
Pereira F B, Santos R C, Lombardi K C, et al. 2012. Soil oxidizable organic carbon fractions under organic management with industrial residue of roasted mate tea// Xu J M, Wu J J, He Y. Functions of natural organic matter in changing environment. Dordrecht: Springer Netherlands, 295−299. | |
Qi L H, Liu X J, Jiang Z H, et al. Combining diameter-distribution function with allometric equation in biomass estimates: a case study of Phyllostachys edulis forests in South Anhui, China. Agroforestry Systems, 2016, 90 (6): 1113- 1121.
doi: 10.1007/s10457-015-9887-6 |
|
Sardans J, Peñuelas J. Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant and Soil, 2013, (365): 1- 33. | |
Shen Y F, Cheng R M, Xiao W F, et al. Effects of understory removal and thinning on soil aggregation, and organic carbon distribution in Pinus massoniana plantations in the three Gorges Reservoir Area. Ecological Indicators, 2021, (123): 107323. | |
Sjögersten S, Turner B L, Mahieu N, et al. Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian Mountains. Global Change Biology, 2003, 9 (5): 759- 772.
doi: 10.1046/j.1365-2486.2003.00598.x |
|
Wang H, Liu S R, Mo J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecological Research, 2010, 25 (6): 1071- 1079.
doi: 10.1007/s11284-010-0730-2 |
|
Wang J Y, Song C C, Wang X W, et al. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China. Catena, 2012, (96): 83- 89. | |
Wang Q, Wen Y X, Zhao B, et al. Coastal soil texture controls soil organic carbon distribution and storage of mangroves in China. Catena, 2021, (207): 105709. | |
Wang S, Huang M, Shao X M, et al. Vertical distribution of soil organic carbon in China. Environmental Management, 2004, 33, S200- S209. | |
Xie E Z, Zhang Y X, Huang B, et al. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981−2011. Soil and Tillage Research, 2021, (205): 104763. | |
Xu L, Wang C Y, Zhu J X, et al. Latitudinal patterns and influencing factors of soil humic carbon fractions from tropical to temperate forests. Journal of Geographical Sciences, 2018, (28): 15- 30.
doi: 10.1007/s11442-018-1456-2 |
|
Yamashita N, Ishizuka S, Hashimoto S, et al. National-scale 3D mapping of soil organic carbon in a Japanese forest considering microtopography and tephra deposition. Geoderma, 2022, (406): 115534. | |
Yu Z, Ciais P, Piao S L, et al. Forest expansion dominates China’s land carbon sink since 1980. Nature Communications, 2022, 13, 5374.
doi: 10.1038/s41467-022-32961-2 |
[1] | 黄书苑,马丁丑,傅一敏,杨建州. 生态脆弱地区林业全要素生产率变动及其影响因素——基于甘肃省10年500个农户的跟踪调查[J]. 林业科学, 2024, 60(6): 153-164. |
[2] | 郑亚雄,范少辉,张璇,周潇,官凤英. 带状采伐毛竹林生产力变化规律[J]. 林业科学, 2023, 59(2): 22-29. |
[3] | 孔凡斌,程文杰,徐彩瑶,陆雨,沈月琴. 国家试点区森林生态资本经济转换效率及其影响因素[J]. 林业科学, 2023, 59(1): 1-11. |
[4] | 汤志颖,高俊宏,曾赞青,王淼淼,漆良华. 竹类植物茎秆液流研究:方法、特征及影响因素[J]. 林业科学, 2022, 58(9): 157-164. |
[5] | 刘彩霞,陈俊辉,秦华,梁辰飞,徐秋芳. 有机无机肥长期配施对毛竹林土壤固碳和固氮微生物的影响[J]. 林业科学, 2022, 58(7): 82-92. |
[6] | 张玮,何玉友,郭子武,汪舍平,陈双林. 失管毛竹林演替过程中乔木树种群落结构和多样性特征[J]. 林业科学, 2022, 58(12): 12-20. |
[7] | 李霞镇,任海青,李贤军,钟永,徐康,郝晓峰. 重组竹-钢夹板螺栓连接节点承载特性和破坏形态[J]. 林业科学, 2021, 57(8): 157-166. |
[8] | 胡文杰,庞宏东,胡兴宜,黄发新,杨佳伟,徐丽君,龚苗. 竹林密度和施肥种类对幕阜山区毛竹笋产量和品质及土壤理化性质的影响[J]. 林业科学, 2021, 57(12): 32-42. |
[9] | 王艳梅,张小雪,朱秀征,张志华,李志,耿晓东,蔡齐飞,刘震. 林木种子休眠与萌发机制研究进展[J]. 林业科学, 2021, 57(10): 128-144. |
[10] | 陈晨,喻方圆. 林木花芽分化研究进展[J]. 林业科学, 2020, 56(9): 119-129. |
[11] | 熊雨露,周宇峰,李平衡,童亮,周国模,施拥军,杜华强. 毛竹林竹鞭生长特征和空间结构的探地雷达无损探测[J]. 林业科学, 2020, 56(12): 19-27. |
[12] | 邹玉友,李金秋,田国双. 基于可行能力理论的国有林区主观福祉影响因素实证分析—全面停止天然林商业性采伐的视角[J]. 林业科学, 2020, 56(10): 154-164. |
[13] | 王志超, 许宇星, 竹万宽, 杜阿朋. 雷州半岛尾巨桉旱季径向生长特征及其影响因素分析[J]. 林业科学, 2019, 55(8): 45-53. |
[14] | 彭晓瑞, 张占宽. 塑膜增强柔性装饰薄木热压复合卷曲变形特性分析[J]. 林业科学, 2019, 55(2): 143-151. |
[15] | 刘秀萍,贾宝全. 北京城区居住区树冠覆盖变化特征[J]. 林业科学, 2019, 55(12): 12-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||