林业科学 ›› 2024, Vol. 60 ›› Issue (5): 191-200.doi: 10.11707/j.1001-7488.LYKX20230391
• 综合评述 • 上一篇
朱丽琴1(),黄荣珍1,彭志远1,邹显花1,廖迎春1,李静凯1,陈光水2,*
收稿日期:
2023-08-28
出版日期:
2024-05-25
发布日期:
2024-06-14
通讯作者:
陈光水
E-mail:zhuliqin@nit.edu.cn
基金资助:
Liqin Zhu1(),Rongzhen Huang1,Zhiyuan Peng1,Xianhua Zou1,Yingchun Liao1,Jingkai Li1,Guangshui Chen2,*
Received:
2023-08-28
Online:
2024-05-25
Published:
2024-06-14
Contact:
Guangshui Chen
E-mail:zhuliqin@nit.edu.cn
摘要:
磷是影响植物生长的关键养分元素之一,地下细根觅养塑性是植物提高土壤磷吸收的重要方式。在自然环境条件下,土壤养分具有异质性或斑块状分布特点,特别是相对固定的养分(如磷)。植物如何调整地下觅养性状对养分斑块的塑性响应尚不清楚,特定细根性状预测地下觅养性状塑性响应更具有较大不确定性。本研究总结植物地下觅养塑性的影响因素,阐述细根(形态、构型、增殖、化学、生理)和菌根真菌性状对富磷斑块的塑性响应,从真菌侵染方式、根系形态结构、养分获取策略等方面分析地下觅养性状及其塑性响应在丛枝菌根和外生菌根树种间的差异。基于地下觅养的碳成本假设,指出细根形态塑性和生理塑性在许多情况下是资源竞争的结果。真菌菌丝的增殖塑性更能提高植物养分获取效率,但当根系和菌根真菌均存在于养分斑块时,根系增殖比真菌反应更敏感。本研究还探讨细根性状对地下觅养塑性的预测,指出细根直径是地下觅养性状变化的重要预测指标。围绕当前植物地下觅养塑性研究存在的不足,从地下觅养塑性框架、地下觅养机制、细根性状对植物养分获取塑性的预测、细根觅养塑性与防御塑性之间的关系等方面提出今后的研究方向,深入理解植物地下磷养分获取策略及其对环境变化的适应机制。
中图分类号:
朱丽琴,黄荣珍,彭志远,邹显花,廖迎春,李静凯,陈光水. 植物地下觅养性状对土壤富磷斑块塑性响应的研究进展[J]. 林业科学, 2024, 60(5): 191-200.
Liqin Zhu,Rongzhen Huang,Zhiyuan Peng,Xianhua Zou,Yingchun Liao,Jingkai Li,Guangshui Chen. Research Progress on the Plasticity Responses of Plant Below-Ground Foraging Traits to Soil Phosphorus-Rich Patches[J]. Scientia Silvae Sinicae, 2024, 60(5): 191-200.
贾林巧, 陈光水, 张礼宏, 等. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报, 2021, 32 (2): 529- 537. | |
Jia L Q, Chen G S, Zhang L H, et al. Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest. Chinese Journal of Applied Ecology, 2021, 32 (2): 529- 537. | |
李淑钰, 李传友. 植物根系可塑性发育的研究进展与展望. 中国基础科学. 植物科学专刊, 2016, 2, 14- 21. | |
Li S Y, Li C Y. Progress and perspectives on the development of plant root plasticity. China basic science ·Special Issue on Plant Sciences, 2016, 2, 14- 21. | |
刘碧桃. 2015. 丛枝菌根和外生菌根树种的根属性变异格局及养分获取策略. 北京: 中国科学院大学. | |
Liu B T. 2015. Patterns of root attribute variability and nutrient acquisition strategies in tufted mycorrhizal and ectomycorrhizal tree species. Beijing: University of Chinese Academy of Sciences. [in Chinese] | |
刘润进, 陈应龙. 2007. 菌根学. 北京: 科学出版社. | |
Liu R J, Chen Y L. 2007. Mycorrhizology. Beijing: Sciense Press. [in Chinese] | |
苗 原, 吴会芳, 马承恩, 等. 菌根真菌与吸收根功能性状的关系: 研究进展与评述. 植物生态学报, 2013, 37 (11): 1035- 1042. | |
Miao Y, Wu H F, Ma C E, et al. Relationship between mycorrhizal fungi and functional traits in absorption roots: research progress and synthesis. Chinese Journal of Plant Ecology, 2013, 37 (11): 1035- 1042. | |
孙 玥, 全先奎, 贾淑霞, 等. 施用氮肥对落叶松人工林一级根外生菌根侵染及形态的影响. 应用生态学报, 2007, 18 (8): 1727- 1732. | |
Sun Y, Quan X K, Jia S X, et al. Effects of nitrogen fertilization on ectomycorrhizal infection of first order roots and root morphology of Larix gmelinii plantation. Chinese Journal of Applied Ecology, 2007, 18 (8): 1727- 1732. | |
于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径、根长和比根长的影响. 应用生态学报, 2007, 18 (5): 959- 964. | |
Yu L Z, Ding G Q, Shi J W, et al. Effects of fertilization on fine root diameter, root length in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 2007, 18 (5): 959- 964. | |
于立忠, 丁国泉, 朱教君, 等. 施肥对日本落叶松不同根序细根养分浓度的影响. 应用生态学报, 2009, 20 (4): 747- 753. | |
Yu L Z, Ding G Q, Zhu J J, et al. Effects of fertilization on nutrient concentrations of different root orders' fine roots in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 2009, 20 (4): 747- 753. | |
张礼宏. 2019. 常绿阔叶林外生菌根与内生菌根树种细根性状对N和P的可塑性响应. 福州: 福建师范大学. | |
Zhang L H. 2019. Plastic responses of fine root traits to N and P in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest. Fuzhou: Fujian Normal University. [in Chinese] | |
张新洁. 2019. 氮磷施肥对水曲柳生长和生态化学计量特征的影响. 黑龙江: 东北林业大学. | |
Zhang X J. 2019. Effects of Nitrogen and Phosphorus fertilization on the growth and ecological stoichiometry of Fraxinus mandshurica Rupr. Heilongjiang: Northeast Forestry University. [in Chinese] | |
Addo-Danso S D, Defrenne C E, McCormack M L, et al. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology, 2020, 221 (1): 1- 13.
doi: 10.1007/s11258-019-00986-1 |
|
Aerts R, Chapin F S III. 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research. Amsterdam: Elsevier, 1−67. | |
Armengaud P, Breitling R, Amtmann A, et al. The potassium-dependent transcriptome of Arbidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology, 2004, 136 (1): 2556- 2576.
doi: 10.1104/pp.104.046482 |
|
Averill C, Bhatnagar J M, Dietze M C, et al. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (46): 23163- 23168. | |
Bardgett R D, Mommer L, de Vries F T. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 2014, 29 (12): 692- 699. | |
Bending G D, Read D J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 1995, 130 (3): 401- 409.
doi: 10.1111/j.1469-8137.1995.tb01834.x |
|
Bennett J A, Maherali H, Reinhart K O, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 2017, 355 (6321): 181- 184.
doi: 10.1126/science.aai8212 |
|
Bergmann J, Weigelt A, van der Plas F, et al. The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6 (27): 3756.
doi: 10.1126/sciadv.aba3756 |
|
Bradshaw A D. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 1965, 13 (C): 115- 155. | |
Chen W L, Koide R T, Adams T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (31): 8741- 8746. | |
Chen W L, Koide R T, Eissenstat D M. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes. Functional Ecology, 2018, 32 (4): 858- 869.
doi: 10.1111/1365-2435.13041 |
|
Chen W L, Zeng H, Eissenstat D M, et al. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 2013, 22 (7): 846- 856.
doi: 10.1111/geb.12048 |
|
Cheng L, Chen W L, Adams T S, et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology, 2016, 97 (10): 2815- 2823.
doi: 10.1002/ecy.1514 |
|
Cluis C P, Mouchel C F, Hardtke C S. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. The Plant Journal: for Cell and Molecular Biology, 2004, 38 (2): 332- 347.
doi: 10.1111/j.1365-313X.2004.02052.x |
|
Comas L H, Eissenstat D M. Patterns in root trait variation among 25 co-existing North American forest species. New Phytologist, 2009, 182 (4): 919- 928.
doi: 10.1111/j.1469-8137.2009.02799.x |
|
Deng Y, Feng G, Chen X P, et al. Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat–maize cropping system. Field Crops Research, 2017, 209, 1- 9.
doi: 10.1016/j.fcr.2017.04.004 |
|
Dickie I, Koele N, Blum J, et al. Mycorrhizas in changing ecosystems. Botany, 2014, 92 (2): 149- 160.
doi: 10.1139/cjb-2013-0091 |
|
Doncheva S, Amenós M, Poschenrieder C, et al. Root cell patterning: a primary target for aluminium toxicity in maize. Journal of Experimental Botany, 2005, 56 (414): 1213- 1220.
doi: 10.1093/jxb/eri115 |
|
Dudinszky N, Cabello M N, Grimoldi A A, et al. 2019. Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in Patagonian semiarid steppes. Rangeland Ecology & Management, 72(4): 692−699. | |
Eissenstat D M, Kucharski J M, Zadworny M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 2015, 208 (1): 114- 124.
doi: 10.1111/nph.13451 |
|
Freschet G T, Roumet C. Sampling roots to capture plant and soil functions. Functional Ecology, 2017, 31 (8): 1506- 1518.
doi: 10.1111/1365-2435.12883 |
|
Fusconi A, Gnavi E, Trotta A, et al. Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytologist, 1999, 142 (3): 505- 516.
doi: 10.1046/j.1469-8137.1999.00410.x |
|
Gehring C, Bennett A. 2009. Mycorrhizal fungal–plant–insect interactions: the importance of a community approach. Environmental Entomology 38(1): 93–102. | |
Grams T E E, Andersen C P. 2007. Competition for resources in trees: physiological versus morphological plasticity//Esser K, Löttge U, Beyschlag W, et al. Progress in Botany. Springer-Verlag, Berlin, Heidelberg, 356–381. | |
Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 2008, 180 (3): 673- 683.
doi: 10.1111/j.1469-8137.2008.02573.x |
|
Gu J C, Xu Y, Dong X Y, et al. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 2014, 34 (4): 415- 425.
doi: 10.1093/treephys/tpu019 |
|
Haling R E, Yang Z J, Shadwell N, et al. Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species. Functional Plant Biology, 2016, 43 (9): 815- 826.
doi: 10.1071/FP16037 |
|
Han M G, Chen Y, Li R, et al. 2022. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist, 234(3): 837–849. | |
Harrison M J, Dewbre G R, Liu J Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell, 2002, 14 (10): 2413- 2429.
doi: 10.1105/tpc.004861 |
|
He Y Q, Zhu Y G, Smith S E, et al. Interactions between soil moisture content and phosphorus supply in spring wheat plants grown in pot culture. Journal of Plant Nutrition, 2002, 25 (4): 913- 925.
doi: 10.1081/PLN-120002969 |
|
Hendricks J J, Nadelhoffer K J, Aber J D. Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology & Evolution, 1993, 8 (5): 174- 178. | |
Hinsinger P, Plassard C, Tang C X, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 2003, 248 (1): 43- 59. | |
Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 2004, 162 (1): 9- 24.
doi: 10.1111/j.1469-8137.2004.01015.x |
|
Hodge A. Plastic plants and patchy soils. Journal of Experimental Botany, 2006, 57 (2): 401- 411.
doi: 10.1093/jxb/eri280 |
|
Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413, 297- 299.
doi: 10.1038/35095041 |
|
Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (31): 13754- 13759. | |
Honvault N, Houben D, Nobile C, et al. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant and Soil, 2021, 461 (1): 137- 150. | |
Jackson R B, Caldwell M M. Integrating resource heterogeneity and plant plasticity: modelling nitrate and phosphate uptake in a patchy soil environment. Journal of Ecology, 1996, 84 (6): 891.
doi: 10.2307/2960560 |
|
Jakobsen I, Chen B D, Munkvold L, et al. 2005. Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant, Cell & Environment, 28(7): 928–938. | |
Johnson N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185 (3): 631- 647.
doi: 10.1111/j.1469-8137.2009.03110.x |
|
Khaledian Y, Quinton J N, Brevik E C, et al. Developing global pedotransfer functions to estimate available soil phosphorus. Science of the Total Environment, 2018, 644, 1110- 1116.
doi: 10.1016/j.scitotenv.2018.06.394 |
|
Kitayama K. The activities of soil and root acid phosphatase in the nine tropical rain forests that differ in phosphorus availability on Mount Kinabalu, Borneo. Plant and Soil, 2013, 367 (1): 215- 224. | |
Kong D L, Ma C G, Zhang Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 2014, 203 (3): 863- 872.
doi: 10.1111/nph.12842 |
|
Kong D L, Wang J J, Kardol P, et al. Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 2016, 13 (2): 415- 424.
doi: 10.5194/bg-13-415-2016 |
|
Koide R T, Kabir Z. Extraradical hyphae of the mycorrhizal fungus glomus intraradices can hydrolyse organic phosphate. New Phytologist, 2000, 148 (3): 511- 517.
doi: 10.1046/j.1469-8137.2000.00776.x |
|
Kou L, Guo D L, Yang H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China. Plant and Soil, 2015, 391 (1): 207- 218. | |
Laliberté E. Below-ground frontiers in trait-based plant ecology. New Phytologist, 2017, 213 (4): 1597- 1603.
doi: 10.1111/nph.14247 |
|
Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 2008, 23 (2): 95- 103. | |
Lambers H, Shane M W, Cramer M D, et al. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany, 2006, 98 (4): 693- 713.
doi: 10.1093/aob/mcl114 |
|
Li F L, Hu H, McCormlack M L, et al. Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests. Journal of Ecology, 2019, 107 (3): 1238- 1249.
doi: 10.1111/1365-2745.13125 |
|
Liang M X, Liu X B, Etienne R S, et al. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology, 2015, 96 (2): 562- 574.
doi: 10.1890/14-0871.1 |
|
Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant Journal: for Cell and Molecular Biology, 2002, 29 (6): 751- 760.
doi: 10.1046/j.1365-313X.2002.01251.x |
|
Liu B T, Li H B, Zhu B, et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 2015, 208 (1): 125- 136.
doi: 10.1111/nph.13434 |
|
Liu B T, Li L, Rengel Z, et al. Roots and arbuscular mycorrhizal fungi are independent in nutrient foraging across subtropical tree species. Plant and Soil, 2019, 442 (1): 97- 112. | |
Liu H S, Li F M. Photosynthesis, root respiration and grain yield of spring wheat in response to surface soil drying. Plant Growth Regulation, 2005, 45 (2): 149- 154.
doi: 10.1007/s10725-004-7864-6 |
|
Liu J, Luo J, Dou L, et al. CBCT study of root and canal morphology of permanent mandibular incisors in a Chinese population. Acta Odontologica Scandinavica, 2014, 72 (1): 26- 30.
doi: 10.3109/00016357.2013.775337 |
|
Liu X B, Burslem D F R P, Taylor J D, et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecology Letters, 2018, 21 (5): 713- 723.
doi: 10.1111/ele.12939 |
|
Lugli L F, Rosa J S, Andersen K M, et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytologist, 2021, 230 (1): 116- 128.
doi: 10.1111/nph.17154 |
|
Lynch J P. Root Phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology, 2011, 156 (3): 1041- 1049.
doi: 10.1104/pp.111.175414 |
|
Lynch J P, Ho M D. Rhizoeconomics: carbon costs of phosphorus acquisition. Plant and Soil, 2005, 269 (1): 45- 56. | |
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555, 94- 97.
doi: 10.1038/nature25783 |
|
Maček I, Dumbrell A J, Nelson M, et al. Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO2 springs. Applied and Environmental Microbiology, 2011, 77 (14): 4770- 4777.
doi: 10.1128/AEM.00139-11 |
|
McCormack M L, Adams T S, Smithwick E A H, et al. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 2012, 195 (4): 823- 831.
doi: 10.1111/j.1469-8137.2012.04198.x |
|
McCormack M L, Dickie I A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207 (3): 505- 518.
doi: 10.1111/nph.13363 |
|
Millar N S, Bennett A E. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 2016, 182 (3): 625- 641.
doi: 10.1007/s00442-016-3673-7 |
|
Mo Q F, Zou B, Li Y W, et al. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest. Scientific Reports, 2015, 5, 14605.
doi: 10.1038/srep14605 |
|
Montagnoli A, Baronti S, Alberto D, et al. Pioneer and fibrous root seasonal dynamics of Vitis vinifera L. are affected by biochar application to a low fertility soil: a rhizobox approach. Science of the Total Environment, 2021, 751, 141455.
doi: 10.1016/j.scitotenv.2020.141455 |
|
Mooney K A, Halitschke R, Kessler A, et al. Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 2010, 327 (5973): 1642- 1644.
doi: 10.1126/science.1184814 |
|
Moyersoen B, Fitter A H, Alexander I J. Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup National Park rain forest, Cameroon, in relation to edaphic parameters. New Phytologist, 1998, 139 (2): 311- 320.
doi: 10.1046/j.1469-8137.1998.00190.x |
|
Ostonen I, Helmisaari H S, Borken W, et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology, 2011, 17 (12): 3620- 3632.
doi: 10.1111/j.1365-2486.2011.02501.x |
|
Ostonen I, Püttsepp, Biel C, et al. Specific root length as an indicator of environmental change. Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology, 2007, 141 (3): 426- 442.
doi: 10.1080/11263500701626069 |
|
Padilla F M, Aarts B H J, Roijendijk Y O A, et al. Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant and Soil, 2013, 369 (1): 377- 386. | |
Phillips R P, Brzostek E, Midgley M G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 2013, 199 (1): 41- 51.
doi: 10.1111/nph.12221 |
|
Pinno B D, Wilson S D. Fine root response to soil resource heterogeneity differs between grassland and forest. Plant Ecology, 2013, 214 (6): 821- 829.
doi: 10.1007/s11258-013-0210-1 |
|
Pregitzer K S, DeForest J L, Burton A J, et al. Fine root architecture of nine North American trees. Ecological Monographs, 2002, 72 (2): 293.
doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 |
|
Raghothama K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50, 665- 693.
doi: 10.1146/annurev.arplant.50.1.665 |
|
Razaq M, Zhang P, Shen H L, et al. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One, 2017, 12 (2): e0171321.
doi: 10.1371/journal.pone.0171321 |
|
Raven J A, Lambers H, Smith S E, et al. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist, 2018, 217 (4): 1420- 1427.
doi: 10.1111/nph.14967 |
|
Reichert T, Rammig A, Fuchslueger L, et al. Plant phosphorus- use and - acquisition strategies in Amazonia. New Phytologist, 2022, 234 (4): 1126- 1143.
doi: 10.1111/nph.17985 |
|
Richardson A E, Lynch J P, Ryan P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 2011a, 349 (1): 121- 156. | |
Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 2011b, 156 (3): 989- 996.
doi: 10.1104/pp.111.175448 |
|
Rillig M C, Aguilar-Trigueros C A, Bergmann J, et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytologist, 2015, 205 (4): 1385- 1388.
doi: 10.1111/nph.13045 |
|
Rousseau J V D, Sylvia D M, Fox A J. 1994. Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytologist, 128(4): 639–644. | |
Ryan M H, Kidd D R, Sandral G A, et al. High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum). Applied Soil Ecology, 2016, 98, 221- 232.
doi: 10.1016/j.apsoil.2015.10.019 |
|
Ryan M H, Tibbett M, Edmonds-Tibbett T, et al. 2012. Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell & Environment, 35(12): 2170– 2180. | |
Ryser P, Lambers H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply. Plant and Soil, 1995, 170 (2): 251- 265.
doi: 10.1007/BF00010478 |
|
Sawers R J, Svane S F, Quan C, et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214 (2): 632- 643.
doi: 10.1111/nph.14403 |
|
Schwinning S. Decomposition analysis of competitive symmetry and size structure dynamics. Annals of Botany, 1996, 77 (1): 47- 58.
doi: 10.1006/anbo.1996.0006 |
|
Shah F, Nicolás C, Bentzer J, et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytologist, 2016, 209 (4): 1705- 1719.
doi: 10.1111/nph.13722 |
|
Shannon S M, Bauer J T, Anderson W E, et al. Plant-soil feedbacks between invasive shrubs and native forest understory species lead to shifts in the abundance of mycorrhizal fungi. Plant and Soil, 2014, 382 (1): 317- 328. | |
Smith S E, Jakobsen I, Grønlund M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 2011, 156 (3): 1050- 1057.
doi: 10.1104/pp.111.174581 |
|
Smith S E, Read D J. 2008. Mycorrhizal Symbiosis. New York: Academic Press. | |
Staddon P L, Ramsey C B, Ostle N, et al. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 2003, 300 (5622): 1138- 1140.
doi: 10.1126/science.1084269 |
|
Steidinger B S, Crowther T W, Liang J, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404- 408.
doi: 10.1038/s41586-019-1128-0 |
|
Sun L J, Ataka M, Han M G, et al. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 2021, 229 (1): 259- 271.
doi: 10.1111/nph.16865 |
|
Sun Y, Gu J C, Zhuang H F, et al. Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China. Ecological Research, 2010, 25 (2): 295- 302.
doi: 10.1007/s11284-009-0654-x |
|
Tinker P B, Nye P H. 2000. Solute movement in the rhizosphere. New York: Oxford University Press. | |
Treseder K K, Allen M F. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist, 2000, 147 (1): 189- 200.
doi: 10.1046/j.1469-8137.2000.00690.x |
|
Turner B L, Joseph Wright S. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry, 2014, 117 (1): 115- 130. | |
Valenzuela-Estrada L R, Vera-Caraballo V, Ruth L E, et al. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 2008, 95 (12): 1506- 1514.
doi: 10.3732/ajb.0800092 |
|
van der Heijden M G A, Martin F M, Selosse M A, et al. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 2015, 205 (4): 1406- 1423.
doi: 10.1111/nph.13288 |
|
van Heerwaarden B, Kellermann V. 2020. Does plasticity trade off with basal heat tolerance?Trends in Ecology & Evolution, 35(10): 874−885. | |
Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications and nitrogen–phosphorus interactions. Ecological Applications:a Publication of the Ecological Society of America, 2010, 20 (1): 5- 15.
doi: 10.1890/08-0127.1 |
|
Vogelsang K M, Bever J D. 2009. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 90(2): 399–407. | |
Walbridge M R. Phosphorus biogeochemistry. Ecology, 2000, 81 (5): 1474- 1475.
doi: 10.1890/0012-9658(2000)081[1474:PB]2.0.CO;2 |
|
Wang P, Diao F W, Yin L M, et al. Absorptive roots trait plasticity explains the variation of root foraging strategies in Cunninghamia lanceolata. Environmental and Experimental Botany, 2016, 129, 127- 135.
doi: 10.1016/j.envexpbot.2016.01.001 |
|
Wang Y L, Lambers H. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant and Soil, 2020, 447 (1): 135- 156. | |
Wen Z H, Li H G, Shen J B, et al. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 2017, 416 (1): 377- 389. | |
Wen Z H, Li H B, Shen Q, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist, 2019, 223 (2): 882- 895.
doi: 10.1111/nph.15833 |
|
Wen Z H, Pang J Y, Tueux G, et al. Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates. Functional Ecology, 2020, 34 (7): 1311- 1324.
doi: 10.1111/1365-2435.13562 |
|
Williamson L C, Ribrioux S P C P, Fitter A H, et al. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 2001, 126 (2): 875- 882.
doi: 10.1104/pp.126.2.875 |
|
Wright S J, Yavitt J B, Wurzburger N, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 2011, 92 (8): 1616- 1625.
doi: 10.1890/10-1558.1 |
|
Wu Q S, Zou Y N, He X H, et al. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf. ) seedlings. Plant Growth Regulation, 2011, 65 (2): 273- 278.
doi: 10.1007/s10725-011-9598-6 |
|
Xia Z C, He Y, Yu L, et al. Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution. New Phytologist, 2020, 225 (2): 782- 792.
doi: 10.1111/nph.16170 |
|
Xu B, Gao Z, Wang J, et al. Morphological changes in roots of Bothriochloa ischaemum intercropped with Lespedeza davurica following phosphorus application and water stress. Plant Biosystems- an International Journal Dealing with All Aspects of Plant Biology, 2015, 149 (2): 298- 306.
doi: 10.1080/11263504.2013.823132 |
|
Yadav R , Tarafdar J . 2001. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biology and Fertility of Soils, 34(3): 140−143. | |
Yao Q, Wang L R, Zhu H H, et al. Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf. ) seedlings. Scientia Horticulturae, 2009, 121 (4): 458- 461.
doi: 10.1016/j.scienta.2009.03.013 |
|
Zhu L Q, Yao X D, Chen W L, et al. Plastic responses of belowground foraging traits to soil phosphorus-rich patches across 17 coexisting AM tree species in a subtropical forest. Journal of Ecology, 2023, 111, 830- 844.
doi: 10.1111/1365-2745.14064 |
[1] | 程鑫,吴纯泽,韦庆钰,李伟,卫星. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应[J]. 林业科学, 2023, 59(2): 58-66. |
[2] | 黄迪,陈园,钟泺龙,梁家俊,王正木,陈祖静. 桉树生长和防御相关酶对摩西管柄囊霉和青枯菌的响应[J]. 林业科学, 2023, 59(11): 68-75. |
[3] | 王晓,毕银丽,王义,田野,李强,杜昕鹏,郭芸. 沙棘林密度和丛枝菌根真菌接种对林下植物和土壤性状的影响[J]. 林业科学, 2023, 59(10): 138-149. |
[4] | 李敏, 赵熙州, 王好运, 卢中科, 丁贵杰. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响[J]. 林业科学, 2022, 58(7): 63-72. |
[5] | 谭明涛,姜礅,武帅,张杰,刘磊,赵佳齐,孟昭军,严善春. 美国白蛾对摩西球囊霉定殖银中杨的适应和生理响应[J]. 林业科学, 2022, 58(6): 88-94. |
[6] | 郝龙飞,刘婷岩,何永琴,张盛晰,赵媛. 菌根真菌调控灌木铁线莲根际土壤生态化学计量特征对氮沉降的应激响应[J]. 林业科学, 2022, 58(6): 151-160. |
[7] | 韩丽娜,谢贤安,陈辉,唐明. 巨桉金属耐受蛋白EgMTP6的分子特征及功能[J]. 林业科学, 2022, 58(5): 93-101. |
[8] | 宋娟,吴祝华,翁行良,赵邢,杨学祥,唐荣林,曹兵,巫昱,沈厚宇,任嘉红,陈凤毛. 枫香根际丛枝菌根真菌多样性[J]. 林业科学, 2021, 57(9): 98-109. |
[9] | 赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征[J]. 林业科学, 2020, 56(9): 87-96. |
[10] | 李倩, 吴小芹, 叶建仁. 一种马尾松菌根辅助细菌——短芽孢杆菌的筛选及鉴定[J]. 林业科学, 2015, 51(5): 159-164. |
[11] | 王琳, 陈展, 尚鹤. 外生菌根真菌在酸雨胁迫下对马尾松土壤微生物代谢功能的影响[J]. 林业科学, 2014, 50(7): 99-104. |
[12] | 宋福强, 孔祥仕, 李季泽, 常伟. 基于抑制消减杂交技术筛选AM真菌与紫穗槐共生相关基因[J]. 林业科学, 2014, 50(11): 64-74. |
[13] | 宰学明, 郝振萍, 赵辉, 钦佩. 丛枝菌根化滨梅苗的根际微生态环境[J]. 林业科学, 2014, 50(1): 41-48. |
[14] | 陈展, 尚鹤. 接种外生菌根菌对模拟酸雨胁迫下马尾松营养元素的影响[J]. 林业科学, 2014, 50(1): 156-163. |
[15] | 刘振坤, 田帅, 唐明. 不同树龄刺槐林丛枝菌根真菌的空间分布及与根际土壤因子的关系[J]. 林业科学, 2013, 49(8): 89-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||