林业科学 ›› 2024, Vol. 60 ›› Issue (5): 89-97.doi: 10.11707/j.1001-7488.LYKX20230272
刘澳1,2,王嘉铮3,4,卢思航1,2,雷菲娅1,2,宁宏涛1,5,腾渝1,5,李守中1,2,*()
收稿日期:
2023-06-23
出版日期:
2024-05-25
发布日期:
2024-06-14
通讯作者:
李守中
E-mail:lisz126@126.com
基金资助:
Ao Liu1,2,Jiazheng Wang3,4,Sihang Lu1,2,Feiya Lei1,2,Hongtao Ning1,5,Yu Teng1,5,Shouzhong Li1,2,*()
Received:
2023-06-23
Online:
2024-05-25
Published:
2024-06-14
Contact:
Shouzhong Li
E-mail:lisz126@126.com
摘要:
目的: 分析我国亚热带生态恢复典型先锋物种马尾松在不同混交比例针阔混交林内的种群动态及其驱动机制,为深入理解亚热带植被重建与恢复进程奠定基础。方法: 基于福建省长汀县生态恢复区4块不同混交比例针阔混交林内马尾松种群调查数据,构建积分投影模型并运用弹性分析、生命表响应试验等方法,探究混交林内马尾松种群动态及其驱动机制。结果: 针阔混交林内马尾松种群整体表现为持续衰退状态(种群增长率λ<1),随着阔叶树种在林分中相对多度增加,马尾松个体平均存活率和平均繁殖率以及λ均呈先上升后下降趋势。弹性分析表明,个体存活对混交林内马尾松种群增长最重要,小径级个体正生长利于种群发展,繁殖对种群增长的影响较为有限。随着阔叶树种相对多度增加,对马尾松种群增长最重要的个体逐渐由幼苗转变为成年树,种群维持风险逐渐增大。生命表响应试验显示,个体生长差异是不同混交林间马尾松种群增长差异的主要来源。结论: 随着阔叶树种混交比例上升,马尾松种群内幼苗和幼年树的比例和重要性持续降低,成年树的比例和重要性不断增加,不同生活史阶段个体生命率的差异化响应驱动马尾松种群动态变化。
中图分类号:
刘澳,王嘉铮,卢思航,雷菲娅,宁宏涛,腾渝,李守中. 长汀生态恢复区不同混交比例针阔混交林内马尾松种群动态及其驱动机制[J]. 林业科学, 2024, 60(5): 89-97.
Ao Liu,Jiazheng Wang,Sihang Lu,Feiya Lei,Hongtao Ning,Yu Teng,Shouzhong Li. Population Dynamics and Driving Mechanism of Pinus massoniana in Coniferous and Broad-Leaved Mixed Forests with Different Mixing Ratios in Changting Ecological Restoration Area[J]. Scientia Silvae Sinicae, 2024, 60(5): 89-97.
表1
样地基本情况"
样地 Plot | 样地位置 Location | 样地大小 Plot sizes/m2 | 马尾松平均基径 Average basal diameter of Pinus massoniana/mm | 马尾松平均高度 Average height of Pinus massoniana/cm | 郁闭度 Canopy density (%) | 阔叶树种的相对多度 Relative abundance of broad-leaved tree species in stands (%) | 阔叶树种数 Number of broad- leaved tree species |
Ⅰ | 25.62°N, 116.46°E | 900 (30 m×30 m) | 46.24±2.06 | 314.56±24.66 | 56 | 5 | 2 |
Ⅱ | 25.66°N, 116.47°E | 800 (40 m×20 m) | 41.22±1.76 | 216.28±18.87 | 60 | 20 | 5 |
Ⅲ | 25.61°N, 116.44°E | 800 (40 m×20 m) | 55.45±1.48 | 505.87±37.37 | 75 | 35 | 5 |
Ⅳ | 25.69°N, 116.41°E | 400 (20 m×20 m) | 153.91±3.04 | 1 602.92±46.05 | 88 | 50 | 6 |
表2
构建IPM模型和数据分析的函数与参数①"
种群参数 Population parameters | 样地 Plot | 函数 Function |
存活概率 Survival probability (s) | Ⅰ | Logit(s) = 0.9930(0.3402)+0.0452(0.0124)x n = 338, P<0.01 |
Ⅱ | Logit(s) = ?0.5135(0.2623)+0.2262(0.0417)x n = 319, P<0.05 | |
Ⅲ | Logit(s) = 0.9383(0.4264)+0.0301(0.0122)x n = 191, P<0.05 | |
Ⅳ | Logit(s )= ?6.2127(2.4342)+0.0747(0.0254)x n = 76, P<0.05 | |
繁殖概率 Reproduction probability (pr) | Ⅰ | Logit(pr) = ?2.4412(0.2820)+0.0458(0.0058)x n = 338, P<0.01 |
Ⅱ | Logit(pr) = ?3.8690(0.4221)+0.0639(0.0069)x n = 319, P<0.01 | |
Ⅲ | Logit(pr) = ?3.8690(0.4221)+0.0209(0.0042)x n = 191, P<0.01 | |
Ⅳ | Logit(pr) = ?3.1124(0.9192)+0.0192(0.0056)x n = 76, P<0.01 | |
生长函数 Growth function (g)/mm | Ⅰ | g = 2.0201(0.5448)+1.0422(0.0092)x n = 338, P<0.05 |
Ⅱ | g = ?0.1894(0.1440)+1.0087(0.0074)x n = 319, P<0.05 | |
Ⅲ | g = ?0.614(0.530)+1.022(0.007)x n = 191, P<0.05 | |
Ⅳ | g = ?7.6652(3.8148)+1.0433(.0225)x n = 76, P<0.05 | |
生长残差 Growth residuals (σ2)/mm | Ⅰ | σ2= 18.4101(5.8618)+0.2951(0.0990)x n = 338, P<0.05 |
Ⅱ | σ2= 7.0710(5.1319)+0.2486(0.0866)x n = 319, P<0.05 | |
Ⅲ | σ2= 18.0869(7.5845)+0.3051(0.1001)x n = 191, P<0.05 | |
Ⅳ | σ2= ?10.3757(4.3228)+0.4887(0.4401)x n = 76, P<0.05 | |
新生幼苗大小分布 Size distribution of newborn seedlings/mm | Ⅰ | 正态分布均值 Normal distribution mean = 7.219 方差 Variance = 22.830 |
Ⅱ | 正态分布均值 Normal distribution mean = 0.553 方差 Variance = 0.134 | |
Ⅲ | 正态分布均值 Normal distribution mean = 1.575 方差 Variance = 5.775 | |
Ⅳ | 正态分布均值 Normal distribution mean = 0.175 方差 Variance = 0.006 |
邓秀秀, 肖文发, 曾立雄, 等. 马尾松幼苗光合产物的运输与分配特征. 林业科学, 2019, 55 (7): 27- 34.
doi: 10.11707/j.1001-7488.20190703 |
|
Deng X X, Xiao W F, Zeng L X, et al. Transport and distribution characteristics of photosynthates of Pinus massoniana seedlings. Scientia Silvae Sinicae, 2019, 55 (7): 27- 34.
doi: 10.11707/j.1001-7488.20190703 |
|
董 鸣. 2015. 生态学透视: 种群生态学. 北京: 科学出版社, 53–54. | |
Dong M. 2015. Ecological perspective: population ecology. Beijing: Science Press, 53–54. [in Chinese] | |
范小明. 福建水蚀荒漠化地区种草治理效果与地表植被演替规律. 现代农业科技, 2014, 616 (2): 273- 274.
doi: 10.3969/j.issn.1007-5739.2014.02.175 |
|
Fan X M. The effect of grass planting and the succession law of surface vegetation in water erosion desertification area of Fujian Province. Modern Agricultural Science and Technology, 2014, 616 (2): 273- 274.
doi: 10.3969/j.issn.1007-5739.2014.02.175 |
|
韩文萍, 丁贵杰, 鲍 斌. 不同种源马尾松对干旱胁迫的生理生态响应. 中南林业科技大学学报, 2012, 32 (5): 25- 29.
doi: 10.3969/j.issn.1673-923X.2012.05.006 |
|
Han W P, Ding G J, Bao B. Physiological and ecological responses of Pinus massoniana seedling from different provenances to drought stress. Journal of Central South University of Forestry & Technology, 2012, 32 (5): 25- 29.
doi: 10.3969/j.issn.1673-923X.2012.05.006 |
|
李金昕, 吴定军, 章世鹏, 等. 四川米仓山自然保护区台湾水青冈种群生命表及动态分析. 植物研究, 2016, 36 (1): 68- 74.
doi: 10.7525/j.issn.1673-5102.2016.01.010 |
|
Li J X, Wu D J, Zhang S P, et al. Life table and dynamic analysis of Fagus hayatae population in Micangshan nature reserve, Sichuan Province, China. Bulletin of Botanical Research, 2016, 36 (1): 68- 74.
doi: 10.7525/j.issn.1673-5102.2016.01.010 |
|
林培治. 2013. 福建长汀水土流失区马尾松种群动态及其机制研究. 福州: 福建师范大学. | |
Lin P Z. 2013. Population dynamics and mechanism of Pinus massoniana Lamb. in the restoring ecosystem, Changting County of Fujian Province. Fuzhou: Fujian Normal University. [in Chinese] | |
彭绍云. 长汀县水土流失区树种结构现状与调整. 亚热带水土保持, 2005, 17 (1): 29- 30, 53.
doi: 10.3969/j.issn.1002-2651.2005.01.009 |
|
Peng S Y. Status and adjustment of tree species structure in soil erosion area of Changting County. Subtropical Soil and Water Conservation, 2005, 17 (1): 29- 30, 53.
doi: 10.3969/j.issn.1002-2651.2005.01.009 |
|
孙文胜, 许基煌, 曹铁如. 湖南株洲市大京水库集水区马尾松群落演替研究. 福建林业科技, 2009, 36 (4): 16- 21, 79.
doi: 10.3969/j.issn.1002-7351.2009.04.005 |
|
Sun W S, Xu J H, Cao T R. Community succession of Pinus massoniana in Dajin reservoir watershed area, Zhuzhou, Hu’nan. Journal of Fujian Forestry Science and Technology, 2009, 36 (4): 16- 21, 79.
doi: 10.3969/j.issn.1002-7351.2009.04.005 |
|
王从容, 李守中, 杨贤宇. 亚热带红壤侵蚀退化区不同恢复水平生境内先锋树种竞争特征. 应用与环境生物学报, 2019, 25 (2): 239- 245. | |
Wang C R, Li S Z, Yang X Y. Competitive patterns of pioneer species at different restoration levels in the subtropical red soil erosion and degradation region. Chinese Journal of Applied & Environmental Biology, 2019, 25 (2): 239- 245. | |
王金池, 黄清麟, 马志波, 等. 2019. 永安市半天然马尾松阔叶混交林的树种组成与多样性. 林业科学, 55(11): 19–26. | |
Wang J C, Huang Q L, Ma Z B, et al. 2019. Species composition and diversity of semi-natural mixed forest of Pinus massoniana and broad-leaved trees in Yong’an. Scientia Silvae Sinicae. 55(11): 19–26. [in Chinese] | |
汪 清, 潘 萍, 欧阳勋志, 等. 马尾松-木荷不同比例混交林种内和种间竞争强度. 生态学杂志, 2021, 40 (1): 49- 57. | |
Wang Q, Pan P, Ouyang X Z, et al. Intraspecific and interspecific competition intensity in mixed plantation with different proportion of Pinus massoniana and Schima superba. Chinese Journal of Ecology, 2021, 40 (1): 49- 57. | |
王晓宁, 崔煜婕, 张滋隆. 不同生态恢复阶段种内竞争影响下的马尾松种群死亡率研究. 福建农业科技, 2021, 51 (1): 26- 31. | |
Wang X N, Cui Y J, Zhang Z L. Population mortality of Pinus massoniana under the influence of intraspecific competition at different stages of ecological restoration. Fujian Agricultural Science and Technology, 2021, 51 (1): 26- 31. | |
吴语嫣, 李守中, 孙眭涛, 等. 长汀水土流失区侵蚀劣地马尾松种群动态. 生态学报, 2019, 39 (6): 2082- 2089. | |
Wu Y Y, Li S Z, Sun S T, et al. Population dynamics of Pinus massoniana on eroded land in the soil erosion area of Changting County. Acta Ecologica Sinica, 2019, 39 (6): 2082- 2089. | |
杨辰丛海. 水土流失治理下长汀县河田镇及其周边地区植被变化分析. 亚热带水土保持, 2021, 33 (2): 9- 12, 26.
doi: 10.3969/j.issn.1002-2651.2021.02.002 |
|
Yang C C H. Analysis on the vegetation change in Hetian town and its surrounding area of Changting County by soil erosion control. Subtropical Soil and Water Conservation, 2021, 33 (2): 9- 12, 26.
doi: 10.3969/j.issn.1002-2651.2021.02.002 |
|
杨贤宇, 李守中, 宋铁燕, 等. 长汀侵蚀退化区砍伐迹地马尾松种群动态. 生态学报, 2018, 38 (9): 3175- 3182. | |
Yang X Y, Li S Z, Song T Y, et al. Population dynamics of Pinus massoniana in the logged forestland of Changting’s eroded and degraded region. Acta Ecologica Sinica, 2018, 38 (9): 3175- 3182. | |
杨 欣, 姚志良, 王 彬, 等. 亚热带常绿阔叶林林分结构对物种组成变异的驱动作用: 从局域到区域尺度. 生物多样性, 2023, 31 (2): 5- 16. | |
Yang X, Yao Z L, Wang B, et al. Driving effects of forest stand structure of a subtropical evergreen broad-leaved forest on species composition variation: from local to regional scales. Biodiversity Science, 2023, 31 (2): 5- 16. | |
姚 雄, 余坤勇, 刘 健, 等. 南方水土流失严重区的生态脆弱性时空演变. 应用生态学报, 2016, 27 (3): 735- 745. | |
Yao X, Yu K Y, Liu J, et al. Spatial and temporal changes of the ecological vulnerability in a serious soil erosion area, Southern China. Chinese Journal of Applied Ecology, 2016, 27 (3): 735- 745. | |
余新晓. 2015. 水土保持学前沿. 北京: 科学出版社, 30–50. | |
Yu X X. 2015. Frontier of soil and water conservation. Beijing: Science Press, 30–50. [in Chinese] | |
张锦堂, 潘志立, 田云海, 等. 云龙天池国家级保护区云南松种群年龄结构及动态分析. 生态学报, 2022, 42 (22): 9091- 9099. | |
Zhang J T, Pan Z L, Tian Y H, et al. Age structure and dynamics of Pinus yunnanensis population in Yunlong Tianchi Nature Reserve. Acta Ecologica Sinica, 2022, 42 (22): 9091- 9099. | |
张欣影, 宁秋蕊, 李守中, 等. 亚热带红壤侵蚀区马尾松针叶生态化学计量特征. 水土保持研究, 2017, 24 (2): 156- 161. | |
Zhang X Y, Ning Q R, Li S Z, et al. Stoichiometric characteristics of Pinus massoniana plantation in the subtropical red soil erosion region. Research of Soil and Water Conservation, 2017, 24 (2): 156- 161. | |
朱鹤健. 我国亚热带山地生态系统脆弱区生态恢复的战略思想: 基于长汀水土保持11年研究成果. 自然资源学报, 2013, 28 (9): 1498- 1506.
doi: 10.11849/zrzyxb.2013.09.005 |
|
Zhu H J. Strategies on eco-restoration in the subtropical mountain ecosystem fragility areas, China: based on the achievement of eleven years’ research in Changting County. Journal of Natural Resources, 2013, 28 (9): 1498- 1506.
doi: 10.11849/zrzyxb.2013.09.005 |
|
Begon M, Townsend C R, Harper J L. 2016. 生态学——从个体到生态系统. 4版. 李 博, 张大勇, 王德华, 译. 北京: 高等教育出版社, 397−398. | |
Begon M, Townsend C R, Harper J L. 2016. Ecology: from individuals to ecosystems. 4th ed. Translated by Li B, Zhang D Y, Wang D H. Beijing: Higher Education Press, 397–398. [in Chinese] | |
Bonser S P. High reproductive efficiency as an adaptive strategy in competitive environments. Functional Ecology, 2013, 27 (4): 876- 885.
doi: 10.1111/1365-2435.12064 |
|
Caswell H. 2001. Matrix population models: construction, analysis, and interpretation. 2nd ed. Sunderland Mass: Sinauer, 176–192. | |
Connell J H, Green P T. Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology, 2000, 81 (2): 568- 584.
doi: 10.1890/0012-9658(2000)081[0568:SDOTTY]2.0.CO;2 |
|
Dahlgren J P, Colchero F, Jones O R, et al. Actuarial senescence in a long-lived orchid challenges our current understanding of ageing. Proceedings of the Royal Society B: Biological Sciences, 2016, 283 (1842): 20161217.
doi: 10.1098/rspb.2016.1217 |
|
Donovan L A, West J B, McLeod K W. Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat. Tree Physiology, 2000, 20 (14): 929- 936.
doi: 10.1093/treephys/20.14.929 |
|
Dou X L, Deng Q, Li M, et al. Reforestation of Pinus massoniana alters soil organic carbon and nitrogen dynamics in eroded soil in south China. Ecological Engineering, 2013, 52 (7): 154- 160. | |
Easterling M R, Ellner S P, Dixon P M. Size-specific sensitivity: applying a new structured population model. Ecology, 2000, 81 (3): 694- 708.
doi: 10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2 |
|
Ellner S P, Rees M. Integral projection models for species with complex demography. American Naturalist, 2006, 167 (3): 410- 428.
doi: 10.1086/499438 |
|
Ettinger A K, Ford K R, HilleRisLambers J. Climate determines upper, but not lower, altitudinal range limits of Pacific Northwest conifers. Ecology, 2011, 92 (6): 1323- 1331.
doi: 10.1890/10-1639.1 |
|
Gaillard J M, Festa-Bianchet M, Yoccoz N G, et al. Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematics, 2000, 31 (1): 367- 393.
doi: 10.1146/annurev.ecolsys.31.1.367 |
|
Li S L, Yu F H, Werger M J A, et al. Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. Journal of Ecology, 2011, 99 (2): 610- 620.
doi: 10.1111/j.1365-2745.2010.01777.x |
|
Li S L, Yu F H, Werger M J A, et al. Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis. Scientific Reports, 2015, 5 (1): 8935.
doi: 10.1038/srep08935 |
|
Liang H X, Huang J G, Ma Q Q, et al. Contributions of competition and climate on radial growth of Pinus massoniana in subtropics of China. Agricultural and Forest Meteorology, 2019, 274 (15): 7- 17. | |
Murray B. Plant population dynamics. New Phytologist, 2002, 155 (2): 201- 202.
doi: 10.1046/j.1469-8137.2002.00461_3.x |
|
Quarles B M, Roach D A. Ageing in an herbaceous plant: increases in mortality and decreases in physiology and seed mass. Journal of Ecology, 2019, 107 (3): 1409- 1418.
doi: 10.1111/1365-2745.13098 |
|
Silvertown J, Charlesworth D. 2009. Introduction to plant population biology. 4th ed. New Jersey: Wiley-Blackwell, 158–160. | |
Song Y F, Yan G, Zhang G F. Light competition contributes to the death of Masson pines of coniferous-broadleaf mixed forests in subtropical China. Forests, 2022, 13 (1): 85.
doi: 10.3390/f13010085 |
|
Wang J Z, Yang X Y, Santos G S, et al. Flexible demographic strategies promote the population persistence of a pioneer conifer tree (Pinus massoniana) in ecological restoration. Forest Ecology and Management, 2023, 529 (1): 120727. | |
Yang X Y, Li S Z, Shen B C, et al. Demographic strategies of a dominant tree species in response to logging in a degraded subtropical forest in Southeast China. Annals of Forest Science, 2018, 75 (3): 84.
doi: 10.1007/s13595-018-0764-0 |
|
Zhao W H, Li T, Cui Y J, et al. 2021. Demographic performance of a pioneer tree species during ecological restoration in the soil erosion area of southeastern China. Global Ecology and Conservation. 32: e01936. | |
Zuidema P A, Jongejans E, Chien P D, et al. Integral Projection models for trees: a new parameterization method and a validation of model output. Journal of Ecology, 2010, 98 (2): 345- 355.
doi: 10.1111/j.1365-2745.2009.01626.x |
[1] | 夏成康,林勇,兰勇,吴高洋,王晟楠,陈伏生. 初植和补植阔叶树对红壤丘陵区湿地松养分获取和转运的影响[J]. 林业科学, 2024, 60(1): 47-57. |
[2] | 郑永林,王云琦,徐晓晓,王玉杰,李耀明. 重庆缙云山马尾松和润楠径向生长的酸雨响应[J]. 林业科学, 2024, 60(1): 58-67. |
[3] | 陈睿,汤孟平. 天目山针阔混交林与常绿阔叶林的空间结构比较[J]. 林业科学, 2023, 59(5): 21-31. |
[4] | 杨福成,雷小勇,曾健辉,邵明勤,植毅进. 鄱阳湖越冬期东方白鹳取食行为及其在2个区域的种群动态[J]. 林业科学, 2023, 59(5): 128-135. |
[5] | 管凝,程金花,侯芳,曾合州,沈子雅,赵梦圆,秦建淼. 西南喀斯特地区2种森林的土壤优先流特征[J]. 林业科学, 2023, 59(12): 61-70. |
[6] | 颜培栋,李鹏,杨章旗,黄绥理,周永斌,零天旺. 不同造林密度马尾松人工林分化特征及其对生产力的影响[J]. 林业科学, 2023, 59(10): 66-75. |
[7] | 郑光楠,杨秀好,韦曼丽,郑霞林. 广西松褐天牛成虫种群动态规律及其与林分和气象因子相关性[J]. 林业科学, 2023, 59(1): 128-142. |
[8] | 罗斯生,罗碧珍,魏书精,胡海清,李小川,王振师,周宇飞,宋兆,钟映霞. 中度火灾一年后马尾松林土壤碳库特征[J]. 林业科学, 2022, 58(9): 25-35. |
[9] | 杨承栋. 发展有群落结构混交林是维护、恢复和提高森林土壤功能实现人工林可持续经营的关键技术[J]. 林业科学, 2022, 58(8): 26-40. |
[10] | 倪妍妍,简尊吉,徐瑾,曾立雄,阮宏华,雷蕾,肖文发,李迈和. 马尾松非结构性碳库大小及分配的纬向变化[J]. 林业科学, 2022, 58(8): 41-52. |
[11] | 李敏, 赵熙州, 王好运, 卢中科, 丁贵杰. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响[J]. 林业科学, 2022, 58(7): 63-72. |
[12] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
[13] | 于国祥,谢茂文,陈雅楠,陈丽霞,王毅花,刘冬平. 山东长岛凤头蜂鹰的种群动态及秋季迁徙[J]. 林业科学, 2022, 58(4): 119-127. |
[14] | 段光爽,郑亚丽,洪亮,宋新宇,符利勇. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价[J]. 林业科学, 2022, 58(10): 1-9. |
[15] | 周紫晶,范付华,尚先文,覃慧娟,王聪慧,丁贵杰,谭健晖. 外源IAA对马尾松幼苗茎干次生生长的影响[J]. 林业科学, 2021, 57(9): 42-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||