林业科学 ›› 2021, Vol. 57 ›› Issue (5): 93-107.doi: 10.11707/j.1001-7488.20210509
郭跃东1,2,3,张会儒1,3,*,卢军1,3,王卓晖4
收稿日期:2019-08-13
									
				
									
				
									
				
											出版日期:2021-07-25
									
				
											发布日期:2021-07-09
									
			通讯作者:
					张会儒
												基金资助:Yuedong Guo1,2,3,Huiru Zhang1,3,*,Jun Lu1,3,Zhuohui Wang4
Received:2019-08-13
									
				
									
				
									
				
											Online:2021-07-25
									
				
											Published:2021-07-09
									
			Contact:
					Huiru Zhang   
												摘要:
目的: 研究长白山北坡云冷杉阔叶混交过伐林乔木层物种多度格局,阐明过伐林群落冠层结构维持的生态过程,探讨生境异质性、密度依赖、种间关联、扩散限制、更新限制和物种分化在针阔混交林群落装配中的作用,为揭示过伐林恢复过程中的物种多度分布机制提供理论指导。方法: 采用经验统计模型、生态位模型、群落中性理论模型以及复合生态位模型,对长白山北坡12块云冷杉阔叶混交过伐林样地进行物种多度格局分析。结果: 经验统计模型中对数正态模型和泊松对数正态模型拟合效果最佳,对数级数模型拟合效果较差,对数级数模型参数T和对数正态模型参数λ可作为表征群落多样性的重要参数;生态位模型中断棍模型拟合效果最佳,其次是生态位重叠模型和几何级数模型,再次为Zipf模型和Zipf-Mandelbrot模型,最后为随机分配模型和优势优先模型;复合生态位模型拟合效果较传统生态位模型有较大提高,复合模型可能在群落丰富种和稀有种呈现竞争等级多度分布时拟合效果最佳;以胸高断面积为指标的物种多度分布拟合与以个体数为指标的经验统计模型和生态位模型物种多度分布拟合表现基本一致,而在群落中性理论模型和复合模型拟合表现方面有一定差异,可能与稀有种断面积比重较大有关。结论: 复合模型可能成为连接经验模型、生态位模型和中性理论模型的纽带,为研究物种多度格局提供数学途径和思路。云冷杉阔叶混交过伐林群落物种等级多度分布某种程度上是生态位过程和随机干扰生态过程共同作用的结果。
中图分类号:
郭跃东,张会儒,卢军,王卓晖. 长白山北坡云冷杉阔叶混交林的物种多度格局[J]. 林业科学, 2021, 57(5): 93-107.
Yuedong Guo,Huiru Zhang,Jun Lu,Zhuohui Wang. Species Abundance Distribution of Spruce-Fir Broad-Leaved Tree Species Mixed Forest in Northern Slope of Changbai Mountain in China[J]. Scientia Silvae Sinicae, 2021, 57(5): 93-107.
表1
样地基本概况①"
| 样地 Sample plot  |  林分密度 Stand density/ (tree·hm-2)  |  树种组成 Tree species composition  |  林分断面积 Basic area/m2  |  坡位 Slope position  |  海拔 Elevation/m  |  郁闭度 Canopy density  |  
| 1 | 934 | 2椴树2杂2冷杉1云杉1色木1红松1落叶松+枫桦 2TI2MT2FI1SP1MA1KP1LA+YB  |  15.42 | 下Down | 742 | 0.60 | 
| 2 | 1 224 | 3杂2椴树2色木1冷杉1红松1枫桦+落叶松+云杉-榆树3  MT2TI2MA1FI1KP1YB+LA+SP-EL  |  15.26 | 中Middle | 752 | 0.70 | 
| 3 | 1 233 | 3杂2椴树2冷杉1色木1落叶松1榆树+红松+枫桦+云杉 3MT2TI2FI1MA1LA1EL+KP+YB+SP  |  16.87 | 中Middle | 760 | 0.71 | 
| 4 | 1 167 | 3椴树2杂2冷杉1色木1红松1榆树+云杉+枫桦-落叶松 3TI2MT2FI1MA1KP1EL+SP+YB-LA  |  17.20 | 上Up | 773 | 0.66 | 
| 5 | 1 328 | 2椴树2色木2杂2冷杉1红松1云杉+枫桦+榆树-落叶松 2TI2MA2MT2FI1KP1SP+YB+EL-LA  |  18.45 | 中Middle | 780 | 0.72 | 
| 6 | 1 422 | 3冷杉2椴树2色木1杂1枫桦1红松+云杉+榆树+落叶松 3FI2TI2MA1MT1YB1KP+SP+EL+LA  |  18.01 | 上Up | 792 | 0.73 | 
| 7 | 1 540 | 4冷杉2椴树1杂1色木1红松1枫桦+榆树+落叶松+云杉 4FI2TI1MT1MA1KP1YB+EL+LA+SP  |  18.60 | 上Up | 771 | 0.76 | 
| 8 | 1 310 | 3冷杉1杂1椴树1枫桦1云杉1色木1红松1白桦+落叶松 3FI1MT1TI1YB1SP1MA1KP1WB+LA  |  15.57 | 下Down | 732 | 0.75 | 
| 9 | 1 438 | 4冷杉2椴树1红松1色木1杂1枫桦+云杉+落叶松+榆树+杨树 4FI2TI1KP1MA1MT1YB+SP+LA+EL+PO  |  17.09 | 下Down | 749 | 0.71 | 
| 10 | 1 195 | 2椴树2杂2冷杉1红松1云杉1枫桦1色木+落叶松+榆树+杨树 2TI2MT2FI1KP1SP1YB1MA+LA+EL+PO  |  19.19 | 下Down | 759 | 0.76 | 
| 11 | 1 301 | 3椴树2色木2冷杉1红松1榆树1云杉+水曲柳+杂+枫桦+落叶松 3TI2MA2FI1KP1EL1SP+AS+MT+YB+LA  |  19.18 | 上Up | 769 | 0.65 | 
| 12 | 1 437 | 2椴树2杂1色木1榆树1冷杉1红松1落叶松1云杉+枫桦+水曲柳 2TI2MT1MA1EL1SP1KP1LA1SP+YB+AS  |  22.12 | 上Up | 773 | 0.73 | 
表2
物种多度格局拟合的经验统计模型检验统计量①"
| 样地 Sample plot  |  ls | ln | pl | ||||||||
| χ2 | D | AIC | χ2 | D | AIC | χ2 | D | AIC | |||
| 1 | 5.39 | 0.40 | 162.14 | 6.99* | 0.30 | 159.10 | 7.14* | 0.30 | 159.21 | ||
| 2 | 3.46 | 0.60* | 143.53 | 0.01 | 0.60* | 129.84 | 0.02 | 0.60* | 129.82 | ||
| 3 | 2.70 | 0.60* | 156.34 | 15.95** | 0.40 | 153.38 | 9.69** | 0.40 | 152.67 | ||
| 4 | 2.74 | 0.60* | 154.48 | 12.54** | 0.40 | 152.12 | 7.64* | 0.40 | 151.51 | ||
| 5 | 3.78 | 0.50 | 154.22 | 0.04 | 0.40 | 143.46 | 0.96 | 0.40 | 143.36 | ||
| 6 | 2.57 | 0.36 | 169.17 | 7.94* | 0.36 | 171.53 | 5.53 | 0.36 | 171.26 | ||
| 7 | 4.05 | 0.45 | 162.73 | 0.24 | 0.36 | 155.58 | 0.34 | 0.36 | 155.64 | ||
| 8 | 1.46 | 0.54 | 163.47 | 4.62 | 0.36 | 167.61 | 3.04 | 0.36 | 167.22 | ||
| 9 | 1.13 | 0.42 | 158.09 | 6.79* | 0.42 | 160.62 | 4.69 | 0.41 | 160.37 | ||
| 10 | 1.85 | 0.50 | 162.21 | 5.73 | 0.30 | 161.24 | 3.51 | 0.30 | 160.92 | ||
| 11 | 4.17 | 0.55 | 164.65 | 0.03 | 0.45 | 151.31 | 0.55 | 0.45 | 150.88 | ||
| 12 | 1.30 | 0.45 | 171.84 | 8.90* | 0.36 | 173.76 | 6.50 | 0.36 | 173.51 | ||
表3
物种多度分布拟合的经验统计模型多样性参数与群落α多样性参数"
| 样地 Sample plot  |  T | λ | 个体数Number of individual | 胸高断面积Basal area | |||||||
| Shannon- Wiener  |  Marglef | Simpson | Pielou | Shannon- Wiener  |  Marglef | Simpson | Pielou | ||||
| 1 | 1.94 | 3.39 | 2.24 | 2.04 | 0.87 | 0.82 | 2.14 | 1.67 | 0.85 | 0.79 | |
| 2 | 1.67 | 4.39 | 2.18 | 1.41 | 0.87 | 0.91 | 1.99 | 1.15 | 0.83 | 0.83 | |
| 3 | 2.03 | 3.92 | 2.22 | 1.69 | 0.88 | 0.87 | 1.91 | 1.36 | 0.81 | 0.75 | |
| 4 | 2.05 | 3.86 | 2.23 | 1.70 | 0.88 | 0.87 | 2.06 | 1.40 | 0.85 | 0.80 | |
| 5 | 1.82 | 4.30 | 2.24 | 1.53 | 0.88 | 0.90 | 2.04 | 1.26 | 0.84 | 0.82 | |
| 6 | 2.34 | 3.56 | 2.18 | 1.93 | 0.86 | 0.80 | 2.06 | 1.58 | 0.84 | 0.76 | |
| 7 | 1.95 | 4.13 | 2.12 | 1.64 | 0.84 | 0.83 | 1.99 | 1.35 | 0.82 | 0.78 | |
| 8 | 2.38 | 3.38 | 2.14 | 1.95 | 0.85 | 0.79 | 2.09 | 1.61 | 0.84 | 0.77 | |
| 9 | 2.15 | 3.55 | 1.96 | 1.79 | 0.79 | 0.74 | 1.86 | 1.51 | 0.76 | 0.71 | |
| 10 | 2.23 | 3.72 | 2.27 | 1.83 | 0.88 | 0.86 | 2.12 | 1.54 | 0.85 | 0.80 | |
| 11 | 2.01 | 4.23 | 2.29 | 1.67 | 0.88 | 0.89 | 2.10 | 1.42 | 0.84 | 0.82 | |
| 12 | 2.33 | 3.65 | 2.19 | 1.92 | 0.85 | 0.81 | 2.31 | 1.66 | 0.89 | 0.85 | |
表4
物种多度分布拟合的经验统计模型多样性参数与群落多样性参数相关性分析①"
| ls.T | ln.λ | Shannon- Wiener  |  Marglef | Simpson | Pielou | Shannon- Wiener.G  |  Marglef.G | Simpson.G | |
| ln.λ | -0.76** | ||||||||
| Shannon-Wiener | -0.18 | 0.29 | |||||||
| Marglef | 0.77** | -0.94** | -0.06 | ||||||
| Simpson | -0.29 | 0.37 | 0.96** | -0.21 | |||||
| Pielou | -0.67* | 0.81** | 0.74* | -0.71** | 0.83** | ||||
| Shannon-Wiener.G | 0.37 | -0.25 | 0.51 | 0.47 | 0.34 | 0.04 | |||
| Marglef.G | 0.80** | -0.91** | -0.08 | 0.98** | -0.26 | -0.71** | 0.54 | ||
| Simpson.G | 0.20 | -0.05 | 0.70** | 0.26 | 0.60* | 0.32 | 0.93** | 0.30 | |
| Pielou.G | -0.28 | 0.46 | 0.65* | -0.27 | 0.58* | 0.64* | 0.72* | -0.18 | 0.81* | 
表5
物种多度格局的生态位模型检验统计量"
| 样地 Sample plot  |  GS | RBS | Zipf | Mand | ONM | DPM | RAM | ||||||||||||||||||||
| χ2 | D | AIC | χ2 | D | AIC | χ2 | D | AIC | χ2 | D | AIC | χ2 | D | AIC | χ2 | D | AIC | χ2 | D | AIC | |||||||
| 1 | 2.16 | 0.10 | 5.36 | 1.92 | 0.10 | 3.36 | 9.96 | 0.25 | 14.35 | 2.50 | 0.10 | 8.70 | 6.50 | 0.20 | 4.12 | 7.00 | 0.50** | 10.99 | 16.00 | 0.50** | 4.70 | ||||||
| 2 | 6.33 | 0.10 | 6.70 | 6.83 | 0.15 | 4.70 | 9.00 | 0.11 | 10.29 | 6.33 | 0.10 | 8.70 | 3.25 | 0.10 | 6.58 | 8.00 | 0.30 | 12.24 | 26.00** | 0.45* | 9.56 | ||||||
| 3 | 4.00 | 0.16 | 3.82 | 7.50 | 0.10 | 4.70 | 8.00 | 0.24 | 9.55 | 4.00 | 0.16 | 5.82 | 2.25 | 0.10 | 4.12 | 3.00 | 0.30 | 13.35 | 25.00** | 0.30 | 9.56 | ||||||
| 4 | 3.67 | 0.20 | 5.36 | 3.25 | 0.11 | -5.10 | 10.39 | 0.24 | 15.69 | 3.91 | 0.20 | 8.70 | 2.00 | 0.10 | 5.41 | 19.00* | 0.30 | 10.99 | 25.00** | 0.30 | 9.56 | ||||||
| 5 | 6.33 | 0.17 | 8.93 | 5.33 | 0.26 | 3.36 | 13.00 | 0.24 | 13.86 | 6.33 | 0.17 | 10.93 | 1.03 | 0.10 | 9.03 | 3.00 | 0.20 | 14.11 | 29.00** | 0.26 | 10.65 | ||||||
| 6 | 7.00 | 0.09 | 8.58 | 3.91 | 0.09 | 0.96 | 7.66 | 0.19 | 13.63 | 7.00 | 0.09 | 10.57 | 2.78 | 0.14 | 8.58 | 7.00 | 0.45** | 11.74 | 19.00* | 0.45** | 8.11 | ||||||
| 7 | 4.33 | 0.18 | 4.65 | 1.83 | 0.18 | -3.50 | 6.41 | 0.27 | 13.04 | 4.33 | 0.18 | 6.65 | 0.75 | 0.09 | 2.65 | 6.00 | 0.27 | 8.58 | 17.00 | 0.27 | 4.79 | ||||||
| 8 | 21.16* | 0.18 | 19.09 | 13.17 | 0.18 | 15.25 | 21.25* | 0.19 | 21.82 | 21.16* | 0.27 | 22.66 | 7.55 | 0.21 | 4.12 | 37.00** | 0.27 | 14.74 | 41.00 | 0.27 | 15.50 | ||||||
| 9 | 8.00 | 0.22 | 9.27 | 4.67 | 0.19 | 0 | 4.80 | 0.17 | 7.27 | 7.00 | 0.17 | 10.12 | 4.13 | 0.22 | 7.11 | 14.00 | 0.42 | 10.17 | 17.00 | 0.42* | 6.72 | ||||||
| 10 | 4.00 | 0.30 | 5.36 | 7.83 | 0.10 | 5.88 | 22.50** | 0.34 | 18.56 | 4.00 | 0.30 | 7.36 | 4.46 | 0.20 | 1.84 | 4.00 | 0.40 | 12.53 | 22.00** | 0.40* | 8.33 | ||||||
| 11 | 1.17 | 0.09 | -9.13 | 1.50 | 0.19 | -11.12 | 0.67 | 0.18 | -6.66 | 1.16 | 0.09 | -7.13 | 2.33 | 0.12 | 4.12 | 10.00 | 0.27 | 11.04 | 23.00* | 0.32 | 8.11 | ||||||
| 12 | 7.00 | 0.27 | 10.58 | 4.67 | 0.19 | 4.12 | 8.67 | 0.18 | 14.20 | 9.00 | 0.18 | 19.25 | 5.13 | 0.21 | 8.58 | 28.00 | 0.36 | 14.74 | 31.00** | 0.36* | 12.73 | ||||||
表6
物种多度格局的中性理论模型检验统计量①"
| 样地 Sample plot  |  J | MZSM | Volkov | ||||||||
| θ | χ2 | D | AIC | θ | m | χ2 | D | AIC | |||
| 1 | 934 | 2.80 | 17.50* | 0.30 | 11.88 | 6.72 | 0.02 | 8.26 | 0.30 | 4.04 | |
| 2 | 1 224 | 1.98 | 27.50** | 0.42 | 14.99 | 4.01 | 0.01 | 14.95 | 0.60* | 10.83 | |
| 3 | 1 233 | 2.33 | 25.50** | 0.31 | 14.30 | 5.25 | 0.01 | 11.11 | 0.40 | 8.87 | |
| 4 | 1 167 | 2.35 | 15.00 | 0.31 | 11.88 | 5.31 | 0.01 | 10.07 | 0.40 | 8.47 | |
| 5 | 1 328 | 2.14 | 29.00** | 0.23 | 15.31 | 4.51 | 0.01 | 15.22 | 0.40 | 12.04 | |
| 6 | 1 422 | 2.57 | 19.50* | 0.28 | 11.62 | 6.00 | 0.01 | 7.37 | 0.36 | 3.79 | |
| 7 | 1 540 | 2.21 | 19.50* | 0.28 | 11.62 | 4.59 | 0.01 | 7.74 | 0.36 | 2.88 | |
| 8 | 1 310 | 2.60 | 43.50** | 0.27 | 20.66 | 6.78 | 0.01 | 17.14 | 0.45 | 16.18 | |
| 9 | 1 438 | 2.29 | 16.00 | 0.33 | 8.87 | 4.82 | 0.01 | 7.86 | 0.42 | 1.59 | |
| 10 | 1 195 | 2.52 | 21.00* | 0.21 | 11.88 | 5.94 | 0.01 | 9.18 | 0.30 | 7.42 | |
| 11 | 1 301 | 2.31 | 18.00 | 0.36 | 12.58 | 4.28 | 0.01 | 9.02 | 0.45 | 5.79 | |
| 12 | 1 437 | 2.56 | 31.00** | 0.28 | 15.74 | 5.46 | 0.01 | 11.17 | 0.36 | 10.71 | |
表7
物种多度分布数据的复合模型拟合①"
| 样地 Sample plot  |  陡变点 Abrupt point  |  dataset 1 多度总和 Abundance sum of dataset 1  |  群落多度 总和 Abundance sum of community  |  dataset 1 多度比例 Abundance proportion of dataset 1  |  dataset 1 最佳拟合模型 Optimum model of dataset 1  |  dataset 2 最佳拟合模型 Optimum model of dataset 2  |  χ2 | D | AIC | 
| 1 | 9 | 860 | 934 | 0.92 | ONM | RBS | 6.33 | 0.10 | -2.23 | 
| 2 | 8 | 1 093 | 1 224 | 0.89 | ONM | RBS | 3.33 | 0.15 | -5.10 | 
| 3 | 8 | 1 072 | 1 233 | 0.87 | ONM | RAM | 5.17 | 0.10 | 1.82 | 
| 4 | 9 | 1 120 | 1 167 | 0.96 | ONM | RAM | 8.00 | 0.13 | 3.36 | 
| 5 | 9 | 1 278 | 1 328 | 0.96 | ONM | RAM | 2.50 | 0.10 | -5.11 | 
| 6 | 10 | 1 393 | 1 422 | 0.98 | ONM | RAM | 3.50 | 0.18 | -3.50 | 
| 7 | 10 | 1 514 | 1 540 | 0.98 | ONM | RBS | 2.83 | 0.09 | -11.12 | 
| 8 | 10 | 1 293 | 1 310 | 0.99 | ONM | RAM | 21.25* | 0.11 | 16.20 | 
| 9 | 10 | 1 415 | 1 438 | 0.98 | ONM | DPM | 7.33 | 0.23 | 3.45 | 
| 10 | 10 | 1 160 | 1 195 | 0.97 | ONM | DPM | 1.58 | 0.10 | -9.16 | 
| 11 | 10 | 1 236 | 1 301 | 0.95 | ONM | RBS | 1.50 | 0.18 | -11.13 | 
| 12 | 11 | 1 420 | 1 437 | 0.99 | ONM | DPM | 7.00 | 0.18 | 6.57 | 
| 程佳佳, 米湘成, 马克平, 等. 亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应. 生物多样性, 2011, 19 (2): 168- 177. | |
| Cheng J J , Mi X C , Ma K P , et al. Responses of species-abundance distribution to varying sampling scales in a subtropical broad-leaved forest. Biodiversity Science, 2011, 19 (2): 168- 177. | |
|  
											  冯云, 马克明, 张育新, 等.  北京东灵山辽东栎(Quercus liaotungensis)林沿海拔梯度的物种多度分布. 生态学报, 2007, 27 (11): 4743- 4750. 
											 												 doi: 10.3321/j.issn:1000-0933.2007.11.043  | 
										|
|  
											   Feng Y ,  Ma K M ,  Zhang Y X , et al.  Species abundance distribution of Quercus liaotungensis forest along altitudinal gradient in Dongling Mountain, Beijing. Acta Ecologica Sinica, 2007, 27 (11): 4743- 4750. 
											 												 doi: 10.3321/j.issn:1000-0933.2007.11.043  | 
										|
| 伏捷, 孙才志, 张华, 等. 辽东山地老秃顶子古冰缘地貌植物种群生态位特征. 地理研究, 2018, 37 (4): 731- 741. | |
| Fu J , Sun C Z , Zhang H , et al. Niche characteristics of plant populations in the paleo-periglacial areas of Mt. Laotudingzi, eastern Liaoning mountainous region. Geographical Research, 2018, 37 (4): 731- 741. | |
| 高利霞, 毕润成, 闫明. 山西霍山油松林的物种多度分布格局. 植物生态学报, 2011, 35 (12): 1256- 1270. | |
| Gao L X , Bi R C , Yan M . Species abundance distribution patterns of Pinus tabulaeformis forest in Huoshan Mountain of Shanxi Province, China. Journal of Plant Ecology, 2011, 35 (12): 1256- 1270. | |
| 韩大勇, 杨允菲. 松嫩草地植物群落物种多度-分布关系及其解释. 生物多样性, 2014, 22 (3): 348- 357. | |
| Han D Y , Yang Y F . Species abundance-distribution relationship and its interpretation in plant communities on the Songnen grasslands, China. Biodiversity Science, 2014, 22 (3): 348- 357. | |
| 刘梦雪, 刘佳佳, 杜晓光, 等. 亚高寒草甸不同生境植物群落物种多度分布格局的拟合. 生态学报, 2010, 30 (24): 6935- 6942. | |
| Liu M X , Liu J J , Du X G , et al. Fitting different models to species abundance distribution patterns in three plant communities in subalpine meadow. Acta Ecologica Sinica, 2010, 30 (24): 6935- 6942. | |
|  
											  陆元昌, WernerSchindele, 刘宪钊, 等.  多功能目标下的近自然森林经营作业法研究. 西南林业大学学报, 2011, 31 (4): 1- 6, 11. 
											 												 doi: 10.3969/j.issn.2095-1914.2011.04.001  | 
										|
|  
											   Lu Y C ,  Werner S ,  Liu X Z , et al.  Study on operation system towards close-to-nature forest based on multi-function purposes. Journal of Southwest Forestry University, 2011, 31 (4): 1- 6, 11. 
											 												 doi: 10.3969/j.issn.2095-1914.2011.04.001  | 
										|
| 马克平, 刘灿然, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅲ. 几种类型森林群落的种-多度关系研究. 生态学报, 1997, 17 (6): 11- 21. | |
| Ma K P , Liu C R , Yu S L , et al. Plant community diversity in Dongling Mountain in Beijing, China Ⅲ. Speicies-abundance relations of several types of forest communities. Acta Ecologica Sinica, 1997, 17 (6): 11- 21. | |
| 牛克昌, 刘怿宁, 沈泽昊, 等. 群落构建的中性理论和生态位理论. 生物多样性, 2009, 17 (6): 579- 593. | |
| Niu K C , Liu Y N , Shen Z H , et al. Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 2009, 17 (6): 579- 593. | |
|  
											  彭少麟, 殷祚云, 任海, 等.  多物种集合的种-多度关系模型研究进展. 生态学报, 2003, 23 (8): 1590- 1605. 
											 												 doi: 10.3321/j.issn:1000-0933.2003.08.018  | 
										|
|  
											   Peng S L ,  Yin Z Y ,  Ren H , et al.  Advances in research on the species-abundance relationship models in multi-species collection. Acta Ecologica Sinica, 2003, 23 (8): 1590- 1605. 
											 												 doi: 10.3321/j.issn:1000-0933.2003.08.018  | 
										|
| 任萍, 王孝安, 郭华. 黄土高原森林群落物种多度的分布格局. 生态学杂志, 2009, 28 (8): 1449- 1455. | |
| Ren P , Wang X A , Guo H . Species abundance distribution pattern of forest communities on Loess Plateau. Chinese Journal of Ecology, 2009, 28 (8): 1449- 1455. | |
| 施建敏, 范承芳, 刘扬, 等. 石灰岩山地淡竹林演替序列的群落物种多度分布格局. 应用生态学报, 2015, 26 (12): 3595- 3601. | |
| Shi J M , Fan C F , Liu Y , et al. Species-abundance distribution patterns along succession series of Phyllostachys glauca forest in a limestone mountain. Chinese Journal of Applied Ecology, 2015, 26 (12): 3595- 3601. | |
|  
											  石培礼, 李文华, 王金锡, 等.  四川卧龙亚高山林线生态交错带群落的种多度关系. 生态学报, 2000, 20 (3): 384- 389. 
											 												 doi: 10.3321/j.issn:1000-0933.2000.03.006  | 
										|
|  
											   Shi P L ,  Li W H ,  Wang J X , et al.  Species-abundance relation of herb communities in subalpine timberline ecotone of Wolong Natural Reserve, Sichuan Province, China. Acta Ecologica Sinica, 2000, 20 (3): 384- 389. 
											 												 doi: 10.3321/j.issn:1000-0933.2000.03.006  | 
										|
|  
											  王绪高, 郝占庆, 叶吉, 等.  长白山阔叶红松林物种多度和空间分布格局的关系. 生态学杂志, 2008, 27 (2): 145- 150. 
											 												 doi: 10.3969/j.issn.1005-376X.2008.02.017  | 
										|
|  
											   Wang X G ,  Hao Z Q ,  Ye J , et al.  Relationships between species abundance and spatial distribution pattern of broad-leaved Korean pine(Pinus koraiensis)mixed forest in Changbai Mountains of China. Chinese Journal of Ecology, 2008, 27 (2): 145- 150. 
											 												 doi: 10.3969/j.issn.1005-376X.2008.02.017  | 
										|
| 徐国瑞, 张育新, 张霜, 等. 海拔对表居土壤动物不同取食功能群多度分布的影响. 土壤学报, 2017, 54 (1): 237- 245. | |
| Xu G R , Zhang Y X , Zhang S , et al. Effect of elevation on abundance distribution of different feeding groups in litter-dwelling soil fauna. Acta Pedologica Sinica, 2017, 54 (1): 237- 245. | |
| 闫琰, 张春雨, 赵秀海. 长白山不同演替阶段针阔混交林群落物种多度分布格局. 植物生态学报, 2012, 36 (9): 923- 934. | |
| Yan Y , Zhang C Y , Zhao X H . Species-abundance distribution patterns at different successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China. Journal of Plant Ecology, 2012, 36 (9): 923- 934. | |
| 姚兰, 崔国发, 易咏梅, 等. 湖北木林子保护区大样地的木本植物多样性. 林业科学, 2016, 52 (1): 1- 9. | |
| Yao L , Cui G F , Yi Y M , et al. Species diversity of woody plants in Mulinzi Nature Reserve of Hubei Province. Scientia Silvae Sinicae, 2016, 52 (1): 1- 9. | |
| 张立敏, 陈斌, 李正跃. 应用中性理论分析局域群落中的物种多样性及稳定性. 生态学报, 2010, 30 (6): 1556- 1563. | |
| Zhang L M , Chen B , Li Z Y . Analysis of the species diversity and community stability in local-community using the neutral theory. Acta Ecologica Sinica, 2010, 30 (6): 1556- 1563. | |
| 张姗, 蔺菲, 原作强, 等. 长白山阔叶红松林草本层物种多度分布格局及其季节动态. 生物多样性, 2015, 23 (5): 641- 648. | |
| Zhang S , Lin F , Yuan Z Q , et al. Herb layer species abundance distribution patterns in different seasons in an old-growth temperate forest in Changbai Mountain, China. Biodiversity Science, 2015, 23 (5): 641- 648. | |
| 张忠华, 胡刚, 祝介东, 等. 喀斯特常绿落叶阔叶混交林物种多度与丰富度空间分布的尺度效应. 生态学报, 2012, 32 (18): 5663- 5672. | |
| Zhang Z H , Gu G , Zhu J D , et al. Scale-dependent spatial variation of species abundance and richness in two mixed evergreen-deciduous broad-leaved karst forests, southwest China. Acta Ecologica Sinica, 2012, 32 (18): 5663- 5672. | |
| 张会儒, 唐守正. 森林生态采伐更新技术体系研究. 北京: 中国林业出版社, 2008. | |
| Zhang H R , Tang S Z . Study on the technical system for ecology-based forest harvesting and regeneration. Beijing: China Forestry Publishing House, 2008. | |
| 赵天启, 古琛, 王亚婷, 等. 不同利用方式下典型草原植物群落物种多度分布格局. 生态学报, 2017, 37 (23): 7894- 7902. | |
| Zhao T Q , Gu C , Wang Y T , et al. Species-abundance distribution of typical steppe grassland plant communities under different use patterns. Acta Ecologica Sinica, 2017, 37 (23): 7894- 7902. | |
| 赵志模, 郭依泉. 群落生态学原理与方法. 重庆: 科学技术文献出版社重庆分社, 1990. | |
| Zhao Z M , Guo Y Q . Principles and methods of community ecology. Chongqing: Chongqing Branch of Scientific and Technical Documentation Press, 1990. | |
|  
											  周淑荣, 张大勇.  群落生态学的中性理论. 植物生态学报, 2006, 30 (5): 868- 877. 
											 												 doi: 10.3321/j.issn:1005-264X.2006.05.018  | 
										|
|  
											   Zhou S R ,  Zhang D Y .  Neutral theory in community ecology. Acta Phytoecologica Sinica, 2006, 30 (5): 868- 877. 
											 												 doi: 10.3321/j.issn:1005-264X.2006.05.018  | 
										|
|  
											  邹春静, 王庆礼, 韩士杰.  长白山暗针叶林建群种竞争关系的研究. 应用与环境生物学报, 2001, 7 (2): 101- 105. 
											 												 doi: 10.3321/j.issn:1006-687X.2001.02.001  | 
										|
|  
											   Zou C J ,  Wang Q L ,  Han S J .  Study on competition relationship between ddificators in dark conifer forest in the Changbai Mountains. Chinese Journal of Applied and Environmental Biology, 2001, 7 (2): 101- 105. 
											 												 doi: 10.3321/j.issn:1006-687X.2001.02.001  | 
										|
| Alonso D , Etienne R S , McKane A J . The merits of neutral theory. Trends in Ecology & Evolution, 2006, 21 (8): 451- 457. | |
| Alonso D , Mckane A J . Sampling Hubbell's neutral theory of biodiversity. Ecology Letters, 2010, 7 (10): 901- 910. | |
|  
											   Bar-Massada A ,  Kent R ,  Carmel Y .  Environmental heterogeneity affects the location of modelled communities along the niche-neutrality continuum. Proceedings of the Royal Society B: Biological Sciences, 2014, 281 (1783): 20133249. 
											 												 doi: 10.1098/rspb.2013.3249  | 
										|
|  
											   Bliss C I ,  Fisher R A .  Fitting the negative binomial distribution to biological data. Biometrics, 1953, 9, 176- 200. 
											 												 doi: 10.2307/3001850  | 
										|
|  
											   Bulmer M G .  On fitting the Poisson lognormal distribution to species-abundance data. Biometrics, 1974, 30 (1): 101- 110. 
											 												 doi: 10.2307/2529621  | 
										|
|  
											   Chase J M .  Towards a really unified theory for metacommunities. Functional Ecology, 2005, 19 (1): 182- 186. 
											 												 doi: 10.1111/j.0269-8463.2005.00937.x  | 
										|
|  
											   Cheng J ,  Mi X ,  Nadrowski K , et al.  Separating the effect of mechanisms shaping species-abundance distributions at multiple scales in a subtropical forest. Oikos, 2012, 121 (2): 236- 244. 
											 												 doi: 10.1111/j.1600-0706.2011.19428.x  | 
										|
|  
											   Chisholm R A ,  Pacala S W .  Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (36): 15821- 15825. 
											 												 doi: 10.1073/pnas.1009387107  | 
										|
|  
											   Fisher C K ,  Mehta P .  The transition between the niche and neutral regimes in ecology. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (36): 13111- 13116. 
											 												 doi: 10.1073/pnas.1405637111  | 
										|
| Frontier S . Diversity and structure in aquatic ecosystems. Oceanography and Marine Biology, 1985, 23 (5): 253- 312. | |
| Hill J K , Hamer K C . Using species abundance models as indicators of habitat disturbance in tropical forests. Journal of Applied Ecology, 2002, 35 (3): 458- 460. | |
|  
											   Hollingsworth T N ,  Johnstone J F ,  Bernhardt E L , et al.  Fire severity filters regeneration traits to shape community assembly in Alaska's boreal forest. PLoS ONE, 2013, 8 (2): e56033. 
											 												 doi: 10.1371/journal.pone.0056033  | 
										|
|  
											   Hu X S ,  He F ,  Hubbell S P .  Neutral theory in macroecology and population genetics. Oikos, 2006, 113 (3): 548- 556. 
											 												 doi: 10.1111/j.2006.0030-1299.14837.x  | 
										|
| Hubbell S P . The unified neutral theory of biodiversity and biogeography. New Jersey, USA: Princeton University Press, 2001. | |
|  
											   Hubbell S P .  Neutral theory and the evolution of ecological equivalence. Ecology, 2006, 87 (6): 1387- 1398. 
											 												 doi: 10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2  | 
										|
| Kenneth P B, David R A. 2002. Model selection and inference: a practical information-theoretic approach. Springer-Verlag New York. | |
|  
											   Kraft N J B ,  Valencia R ,  Ackerly D D .  Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 2008, 322 (5901): 580- 582. 
											 												 doi: 10.1126/science.1160662  | 
										|
|  
											   Lai J ,  Coomes D A ,  Du X , et al.  A general combined model to describe tree-diameter distributions within subtropical and temperate forest communities. Oikos, 2013, 122 (11): 1636- 1642. 
											 												 doi: 10.1111/j.1600-0706.2013.00436.x  | 
										|
|  
											   Lauren S U ,  Charles B H ,  Paul D A .  Twelve-year responses of planted and naturally regenerating conifers to variable-retention harvest in the Pacific northwest, USA. Canadian Journal of Forest Research, 2013, 43 (1): 46- 55. 
											 												 doi: 10.1139/cjfr-2012-0323  | 
										|
| Legovic T . Statistical ecology.A primer on methods and computing. New York: Wiley-Interscience Publication, 1991, 337 | |
|  
											   Magurran A E ,  Henderson P A .  Explaining the excess of rare species in natural species abundance distributions. Nature, 2003, 422 (6933): 714- 716. 
											 												 doi: 10.1038/nature01547  | 
										|
|  
											   María V L ,  Guillermo M P ,  Emilce G .  Alternative silvicultural practices with variable retention to improve understory plant diversity conservation in southern Patagonian forests. Forest Ecology and Management, 2011, 262 (7): 1236- 1250. 
											 												 doi: 10.1016/j.foreco.2011.06.021  | 
										|
|  
											   Matthews T J ,  Borges P A V ,  Whittaker R J .  Multimodal species abundance distributions: a deconstruction approach reveals the processes behind the pattern. Oikos, 2014, 123 (5): 533- 544. 
											 												 doi: 10.1111/j.1600-0706.2013.00829.x  | 
										|
| Matthews T J , Whittaker R J . Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecology & Evolution, 2014, 4 (11): 2263- 2277. | |
|  
											   McGill B J ,  Etienne R S ,  Gray J S , et al.  Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 2007, 10 (10): 995- 1015. 
											 												 doi: 10.1111/j.1461-0248.2007.01094.x  | 
										|
|  
											   McGill B J ,  Maurer B A ,  Weiser M D .  Empirical evaluation of neutral theory. Ecology, 2006, 87 (6): 1411- 1423. 
											 												 doi: 10.1890/0012-9658(2006)87[1411:EEONT]2.0.CO;2  | 
										|
|  
											   McGill B J .  A test of the unified neutral theory of biodiversity. Nature, 2003, 422 (6934): 881- 885. 
											 												 doi: 10.1038/nature01583  | 
										|
|  
											   Morlon H ,  White E P ,  Etienne R S , et al.  Taking species abundance distributions beyond individuals. Ecology Letters, 2009, 12 (6): 488- 501. 
											 												 doi: 10.1111/j.1461-0248.2009.01318.x  | 
										|
|  
											   Picard N ,  Bar-Hen A .  Is the spatial correlation between the tree basal area and its increment a good indicator for competition?. Annals of Forest Science, 2002, 59 (1): 41- 51. 
											 												 doi: 10.1051/forest:2001004  | 
										|
|  
											   Podlaski R .  Diversity of patch structure in Central European forests: are tree diameter distributions in near-natural multilayered Abies-Fagus stands heterogeneous?. Ecological Research, 2010, 25 (3): 599- 608. 
											 												 doi: 10.1007/s11284-010-0690-6  | 
										|
|  
											   Podlaski R .  Forest modelling: the gamma shape mixture model and simulation of tree diameter distributions. Annals of Forest Science, 2017, 74 (2): 29- 38. 
											 												 doi: 10.1007/s13595-017-0629-y  | 
										|
|  
											   Poot P ,  Lambers H .  Are Trade-offs in allocation pattern and root morphology related to species abundance? A congeneric comparison between rare and common species in the south-western Australian flora. Journal of Ecology, 2003, 91 (1): 58- 67. 
											 												 doi: 10.1046/j.1365-2745.2003.00738.x  | 
										|
|  
											   Roughgarden J .  Is there a general theory of community ecology?. Biology & Philosophy, 2009, 24 (4): 521- 529. 
											 												 doi: 10.1007/s10539-009-9164-z  | 
										|
| Stanley H W , Tilman D . Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 2006, 9 (1): 15- 23. | |
|  
											   Sugihara G ,  Bersier L F ,  Southwood T R E , et al.  Predicted correspondence between species abundances and dendrograms of niche similarities. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (9): 5246- 5251. 
											 												 doi: 10.1073/pnas.0831096100  | 
										|
| Team R D C. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing. | |
|  
											   Tokeshi M .  Niche apportionment or random assortment: species abundance patterns revisited. Journal of Animal Ecology, 1990, 59 (3): 1129- 1146. 
											 												 doi: 10.2307/5036  | 
										|
|  
											   Vellend M .  Conceptual synthesis in community ecology. Quartyerly Review of Biology, 2010, 85 (2): 183- 206. 
											 												 doi: 10.1086/652373  | 
										|
|  
											   Volkov I ,  Banavar J R ,  Hubbell S P , et al.  Neutral theory and relative species abundance in ecology. Nature, 2003, 424 (6952): 1035- 1037. 
											 												 doi: 10.1038/nature01883  | 
										|
|  
											   Walker S C ,  Cyr H .  Testing the standard neutral model of biodiversity in lake communities. Oikos, 2007, 116 (1): 143- 155. 
											 												 doi: 10.1111/j.2006.0030-1299.15300.x  | 
										|
|  
											   Wang H ,  Hui P ,  Gangying H , et al.  Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Scientific Reports, 2018, 8 (1): 9149- 9156. 
											 												 doi: 10.1038/s41598-018-27140-7  | 
										|
|  
											   Wang X ,  Wiegand T ,  Wolf A , et al.  Spatial patterns of tree species richness in two temperate forests. Journal of Ecology, 2011, 99 (6): 1382- 1393. 
											 												 doi: 10.1111/j.1365-2745.2011.01857.x  | 
										|
| Yuan Z , Gazol A , Wang X , et al. Scale specific determinants of tree diversity in an old growth temperate forest in China. Basic & Applied Ecology, 2011, 12 (6): 488- 495. | |
| Zhang J , Hao Z , Song B , et al. Fine-scale species co-occurrence patterns in an old-growth temperate forest. Forest Ecology & Management, 2009, 257 (10): 2115- 2120. | 
| [1] | 范靖宇, 吴哿, 朱耿平, 蔡波. 检疫性害虫中对长小蠹在中国的适生区[J]. 林业科学, 2019, 55(6): 81-85. | 
| [2] | 吕振刚, 李文博, 黄选瑞, 张志东. 气候变化情景下河北省3个优势树种适宜分布区预测[J]. 林业科学, 2019, 55(3): 13-21. | 
| [3] | 赵力, 李慧琪, 朱耿平, 蔡波, 李敏, 刘强. 入侵害虫椰子木蛾(鳞翅目:木蛾科)在我国的潜在分布[J]. 林业科学, 2015, 51(10): 93-100. | 
| [4] | 张志东;臧润国 丁易. 海南岛霸王岭热带天然林景观中木本植物功能群划分及其潜在分布*[J]. 林业科学, 2009, 12(10): 1-8. | 
| [5] | 郭逍宇 张金屯 宫辉力 张桂莲 董志. 安太堡露天矿区人工植被的物种多度分布分析[J]. 林业科学, 2007, 43(3): 118-121. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||