林业科学 ›› 2020, Vol. 56 ›› Issue (12): 145-156.doi: 10.11707/j.1001-7488.20201217
侯孟阳1,2,邓元杰1,2,姚顺波1,2,*,刘广全3
收稿日期:
2018-12-10
出版日期:
2020-12-25
发布日期:
2021-01-22
通讯作者:
姚顺波
基金资助:
Mengyang Hou1,2,Yuanjie Deng1,2,Shunbo Yao1,2,*,Guangquan Liu3
Received:
2018-12-10
Online:
2020-12-25
Published:
2021-01-22
Contact:
Shunbo Yao
摘要:
目的: 在空间视角下探究森林质量与经济增长间的关系,在异质性条件下分析不同地区间存在的差异,并预测不同地区未来演变的时间路径。方法: 基于2003—2016年省际面板数据,借鉴环境库兹涅茨曲线(EKC)分析框架,建立森林质量与经济增长关系的空间面板计量模型。结果: 1)经济增长对森林质量提升的促进作用是一个长期过程,现阶段森林质量与经济增长间表现出U形变化特征,EKC假说得到验证;2)不同地区间的变化特征存在显著差异,东北和华北地区呈倒N形变化,西北地区呈U形变化,西南地区呈负向线性变化,而华南及东南地区不存在EKC关系,现阶段东北和华北地区的森林质量未跨过第2个拐点。结论: 考虑不同地区异质性条件进行计量检验能够提供更具差异化的解释,空间溢出效应的存在使得不同地区邻近省市应建立完备的森林经营与保护合作机制、林业产业保障与要素流动机制,并结合自身禀赋条件,寻求森林质量提升、生态保护与经济增长协调发展的均衡点。
中图分类号:
侯孟阳,邓元杰,姚顺波,刘广全. 考虑空间溢出效应的森林质量与经济增长关系EKC检验[J]. 林业科学, 2020, 56(12): 145-156.
Mengyang Hou,Yuanjie Deng,Shunbo Yao,Guangquan Liu. EKC Test of the Relationship between Forest Quality and Economic Growth Considering Spatial Spillover Effects[J]. Scientia Silvae Sinicae, 2020, 56(12): 145-156.
表1
变量说明及描述性统计"
变量 Variables | 单位 Unit | 说明 Instructions | 平均值 Mean | 标准差 Standard deviation | 最小值 Min. | 最大值 Max. |
森林质量 Forest quality | m3·hm-2 | 单位面积森林蓄积量 Forest stock per unit area | 54.62 | 36.78 | 6.23 | 435.67 |
经济增长 Economic growth | yuan·person-1 | 不变价人均GDP GDP per capita in constant prices | 32 480.14 | 22 443.72 | 3 701.00 | 116 799.00 |
城镇化水平Urbanization | % | 常住人口城镇化率 Urbanization of the resident population | 49.52 | 15.28 | 21.05 | 90.30 |
林业固定资产投资 Fixed assets investment in forestry | 108yuan | 营林和造林固定资产投资 Fixed asset investment | 33.26 | 97.30 | 0.09 | 950.00 |
林木生产 Forest production | 104m3 | 木材产量 Timber yield | 325.44 | 429.02 | 0.00 | 2 954.80 |
林业劳动力 Forestry labor force | person | 林业系统第一产业从业人员 Primary industry practitioners in forestry | 33 051.68 | 50 730.52 | 125.00 | 294 239.00 |
人口密度 Population density | person·km-2 | 单位土地面积的人口数量 Population per unit land area | 402.845 | 577.587 | 1.977 | 3 850.79 |
降水量 Precipitation | mm | 遥感解译的年均降水量 Average precipitation by remote sensing | 953.07 | 528.01 | 131.53 | 2 432.60 |
气温 Temperature | ℃ | 遥感解译的年均气温 Annual temperature by remote sensing | 12.62 | 6.26 | 0.05 | 25.35 |
表2
森林质量的全局Moran’s I指数"
指标Index | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
Moran’s I | 0.082 1 | 0.179 3 | 0.185 9 | 0.208 3 | 0.208 7 | 0.221 1 | 0.226 8 | 0.224 9 | 0.213 3 | 0.200 0 | 0.185 1 | 0.168 6 | 0.144 6 | 0.141 7 |
Z | 1.789 | 1.854 | 1.961 | 2.170 | 2.173 | 2.336 | 2.391 | 2.364 | 2.249 | 2.118 | 1.974 | 1.816 | 1.806 | 1.745 |
P | 0.074 | 0.064 | 0.049 | 0.029 | 0.029 | 0.019 | 0.017 | 0.018 | 0.025 | 0.034 | 0.048 | 0.069 | 0.072 | 0.078 |
表3
森林质量与经济增长关系的实证分析结果①"
变量 Variables | SLM | SEM | SDM | OLS-FE | |||||||
模型1 Model 1 | 模型2 Model 2 | 模型3 Model 3 | 模型4 Model 4 | 模型5 Model 5 | 模型6 Model 6 | 模型7 Model 7 | 模型8 Model 8 | ||||
lnpGDP | -2.302 (-0.36) | -1.718 *** (-3.45) | -1.672 (-0.25) | -1.469 ** (-2.51) | 0.325 (0.05) | -0.842 (-1.34) | -0.127 (-0.02) | -2.629 *** (-5.05) | |||
(lnpGDP)2 | 0.149 (0.23) | 0.085 *** (3.37) | 0.099 (0.14) | 0.078 *** (2.60) | -0.074 (-0.10) | 0.045 (1.46) | -0.121 (-0.17) | 0.135 *** (4.97) | |||
(lnpGDP)3 | -0.003 (-0.10) | -0.001 (-0.03) | 0.004 (0.17) | 0.009 (0.35) | |||||||
lnURBAN | 0.341 *** (3.51) | 0.341 *** (3.51) | 0.296 *** (2.97) | 0.296 *** (2.97) | 0.337 *** (3.37) | 0.338 *** (3.38) | 0.444 *** (4.13) | 0.446 *** (4.16) | |||
lnFAIF | 0.007 (0.93) | 0.007 (0.92) | 0.008 (1.00) | 0.008 (1.00) | 0.015 * (1.74) | 0.014 * (1.75) | 0.007 (0.84) | 0.007 4 (0.86) | |||
lnTY | 0.043 *** (2.67) | 0.042 *** (2.72) | 0.039 ** (2.38) | 0.039 ** (2.42) | 0.047 *** (2.83) | 0.047 *** (2.89) | 0.048 *** (2.66) | 0.049 *** (2.83) | |||
lnPIPF | -0.177 *** (-4.42) | -0.176 *** (-4.48) | -0.190 *** (-4.39) | -0.190 *** (-4.43) | -0.138 *** (-2.88) | -0.139 *** (-3.01) | -0.239 *** (-5.46) | -0.242 *** (-5.67) | |||
lnPD | -0.418 * (-1.91) | -0.426 ** (-2.09) | -0.369 (-1.51) | -0.371 (-1.59) | -0.162 (-0.46) | -0.160 (-0.46) | -0.560 ** (-2.29) | -0.529 ** (-2.33) | |||
lnPRE | -0.007 (-0.15) | -0.007 (-0.16) | 0.025 (0.44) | 0.025 (0.44) | 0.048 (0.76) | 0.047 (0.75) | -0.006 (-0.12) | -0.005 (-0.09) | |||
lnTEM | -0.009 (-0.28) | -0.009 (-0.28) | -0.023 (-0.67) | -0.022 (-0.67) | -0.016 (-0.51) | -0.017 (-0.52) | 0.012 (0.35) | 0.013 (0.35) | |||
C | 11.70 (0.51) | 19.68*** (5.82) | |||||||||
ρ/λ | 0.370 *** (6.78) | 0.369 *** (6.79) | 0.379 *** (5.83) | 0.379 *** (5.84) | 0.223 *** (3.31) | 0.223 *** (3.32) | |||||
R2 | 0.565 | 0.566 | 0.512 | 0.513 | 0.428 | 0.427 | 0.331 | 0.330 | |||
lgL | 220.539 | 220.534 | 213.846 | 213.845 | 235.236 | 235.217 | |||||
AIC | -417.078 | -419.068 | -403.691 | -405.691 | -426.472 | -430.434 | |||||
Sigma2 | 0.021 *** (14.54) | 0.021 *** (14.54) | 0.021 *** (14.45) | 0.021 *** (14.45) | 0.020 *** (14.64) | 0.020 *** (14.64) |
表4
不同地区森林质量与经济增长关系的计量结果"
变量 Variables | 东北地区-SLM Northeast China-SLM | 华北地区-SLM North China-SLM | 西北地区-SEM Northwest China-SEM | 西南地区-OLS Southwest China-OLS | 华南及东南地区-SLM South and southeast China-SLM | |||||||||
固定效应FE | 固定效应FE | 随机效应RE | 固定效应FE | 随机效应RE | ||||||||||
模型1 Model 1 | 模型2 Model 2 | 模型3 Model 3 | 模型4 Model 4 | 模型5 Model 5 | 模型6 Model 6 | 模型7 Model 7 | 模型8 Model 8 | 模型9 Model 9 | 模型10 Model 10 | |||||
lnpGDP | -59.543 ** (-2.39) | -2.411 ** (-1.97) | -8.632 ** (-2.58) | -1.083 (-1.01) | -56.00* (-1.75) | -3.616 ** (-2.19) | 1.867 (1.15) | -0.21** (-2.68) | -0.757 (-0.87) | 0.066 (0.89) | ||||
(lnpGDP)2 | 5.859 ** (2.34) | 0.120 * (1.93) | 0.826 ** (2.55) | 0.065 (1.18) | 5.703 * (1.70) | 0.205 ** (2.53) | -0.113 (-1.28) | 0.043 (0.95) | ||||||
(lnpGDP)3 | -0.191 ** (-2.29) | -0.026 ** (-2.51) | -0.192 (-1.64) | |||||||||||
lnURBAN | 0.667 *** (3.64) | 0.712 *** (3.73) | 0.303 (1.13) | 0.288 (1.08) | -1.652 ** (-3.08) | -1.463 ** (-2.84) | -0.053 (-0.32) | -0.071 4 (-0.42) | 0.159 (0.68) | 0.181 (0.78) | ||||
lnFAIF | 0.019 (0.84) | 0.029 (1.26) | 0.004 (0.43) | 0.003 (0.27) | 0.046 (1.47) | 0.054 (1.63) | 0.023 (1.27) | 0.014 (0.84) | 0.024 (1.39) | 0.018 (1.14) | ||||
lnTY | 0.044 * (1.78) | 0.052 ** (2.03) | 0.064 ** (2.57) | 0.065 *** (2.60) | 0.039 (1.31) | 0.031 (1.02) | -0.130 ** (-2.28) | -0.180 ** (-2.60) | -0.052 (-1.28) | -0.043 (-1.09) | ||||
lnPIPF | -0.488 *** (-6.42) | -0.455 *** (-5.83) | -0.363 *** (-5.69) | -0.360 *** (-5.65) | -0.061 (-0.66) | -0.060 (-0.63) | -0.57*** (-3.87) | -0.50*** (-3.64) | -0.138 ** (-2.19) | -0.153 ** (-2.50) | ||||
lnPD | -5.380 *** (-3.12) | -6.752 *** (-3.98) | -0.501 * (-1.80) | -0.611 * (-1.91) | 0.209 (0.93) | 0.253 (1.03) | -0.103 (-0.11) | -0.941 (-1.42) | -0.362 ** (-2.23) | -0.331 ** (-2.11) | ||||
lnPRE | -0.033 5 (-0.87) | -0.034 8 (-0.86) | -0.111 (-1.50) | -0.109 (-1.47) | -0.012 1 (-0.11) | 0.014 (0.12) | 0.003 (0.02) | -0.005 (-0.03) | 0.076 (0.78) | 0.092 (0.97) | ||||
lnTEM | -0.008 (-0.26) | -0.005 (-0.16) | 0.158 (0.81) | 0.137 (0.72) | 0.036 (0.79) | 0.032 (0.67) | -0.047 (-1.03) | -0.042 (-0.92) | 0.226 (0.54) | 0.211 (0.50) | ||||
C | 19.13* (1.87) | 24.25*** (3.26) | 3.987 (0.38) | 16.40*** (4.05) | 7.534 (1.52) | 3.348 (1.48) | ||||||||
ρ | 0.270 * (1.93) | 0.260 * (1.81) | 0.543 *** (7.16) | 0.538 *** (7.11) | 0.757 *** (7.40) | 0.682 *** (6.20) | 0.331 *** (3.54) | 0.342 *** (3.71) | ||||||
R2 | 0.692 | 0.686 | 0.761 | 0.766 | 0.699 | 0.682 | 0.523 | 0.530 | 0.488 | 0.489 | ||||
lgL | 88.061 | 85.548 | 88.299 | 88.172 | 37.912 | 36.794 | 38.001 | 37.550 | ||||||
AIC | -152.122 | -149.095 | -152.599 | -154.345 | -47.825 | -47.588 | -50.000 | -51.101 | ||||||
Sigma2 | 0.002 *** (5.20) | 0.003 *** (5.21) | 0.006 *** (6.23) | 0.006 *** (6.24) | 0.010 *** (5.04) | 0.011 *** (5.14) | 0.027 *** (8.24) | 0.027 *** (8.24) |
表5
不同地区跨过拐点的时间路径预测①"
地区Regions | 曲线形式 Curved form | 地区 Regions | 当前所处阶段 Current stage | 拐点出现年份 Year of inflection point | 跨过拐点所需时间 Time to cross the inflection point/a |
东北地区 Northeast China | 倒N形Inverted N-shape | 内蒙古Inner Mongolia | 下降Decline | — | — |
倒N形Inverted N-shape | 辽宁Liaoning | 上升Increase | 2017—2018 | 1~2 | |
倒N形Inverted N-shape | 吉林Jilin | 上升Increase | 2017—2018 | 1~2 | |
倒N形Inverted N-shape | 黑龙江Heilongjiang | 上升Increase | 2020—2021 | 4~5 | |
华北地区 North China | 倒N形Inverted N-shape | 北京Beijing | 上升Increase | 2017—2018 | 1~2 |
倒N形Inverted N-shape | 天津Tianjin | 上升Increase | 2017—2018 | 1~2 | |
倒N形Inverted N-shape | 河北Hebei | 上升Increase | 2026—2027 | 10~11 | |
倒N形Inverted N-shape | 山西Shanxi | 上升Increase | 2028—2029 | 12~13 | |
倒N形Inverted N-shape | 山东Shandong | 上升Increase | 2021—2022 | 5~6 | |
倒N形Inverted N-shape | 河南Henan | 上升Increase | 2025—2026 | 9~10 |
安慧君, 王硕, 常峥, 等. 森林质量模糊评价模型中赋权方法的选择——以红花尔基为例. 西北林学院学报, 2018, 33 (5): 167- 171.
doi: 10.3969/j.issn.1001-7461.2018.05.26 |
|
An H J , Wang S , Chang Z , et al. Method of empowerment selection in the forest quality fuzzy evaluation model:a case study of Honghuaerji. Journal of Northwest Forestry University, 2018, 33 (5): 167- 171.
doi: 10.3969/j.issn.1001-7461.2018.05.26 |
|
谷振宾. 2007.中国森林资源变动与经济增长关系研究.北京: 北京林业大学博士学位论文. | |
Gu Z B. 2007. Study on the relationship between amount change of forest resources and economic growth in China. Beijing: PhD thesis of Beijing Forestry University.[in Chinese] | |
李凌超, 刘金龙, 程宝栋, 等. 中国劳动力转移对森林转型的影响. 资源科学, 2018, 40 (8): 1526- 1538. | |
Li L C , Liu J L , Cheng B D , et al. Influence of labor transfer on China's forest transition. Resources Science, 2018, 40 (8): 1526- 1538. | |
李太平, 张锋, 胡浩. 中国化肥面源污染EKC验证及其驱动因素. 中国人口·资源与环境, 2011, 21 (11): 118- 123.
doi: 10.3969/j.issn.1002-2104.2011.11.020 |
|
Li T P , Zhang F , Hu H . Authentication of the Kuznets curve in agriculture non-point source pollution and its drivers' analysis. China Population, Resources and Environment, 2011, 21 (11): 118- 123.
doi: 10.3969/j.issn.1002-2104.2011.11.020 |
|
李卫兵, 陈思. 我国东中西部二氧化碳排放的驱动因素研究. 华中科技大学学报:社会科学版, 2011, 25 (3): 111- 116. | |
Li W B , Chen S . A study on the driving forces of the carbon dioxide emissions in the east, middle and west regions of China. Journal of Huazhong University of Science and Technology:Social Science Edition, 2011, 25 (3): 111- 116. | |
林伯强, 蒋竺均. 中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析. 管理世界, 2009, (4): 27- 36. | |
Lin B Q , Jiang Z J . Environmental Kuznets curve prediction and influencing factors analysis of carbon dioxide in China. Management World, 2009, (4): 27- 36. | |
刘璨, 吕金芝. 中国森林资源环境库兹涅茨曲线问题研究. 制度经济学研究, 2010, (2): 138- 161. | |
Liu C , Lü J Z . On China's forest resource environmental Kuznets curve. Research of Institutional Economics, 2010, (2): 138- 161. | |
马晓熠, 裴韬. 基于探索性空间数据分析方法的北京市区域经济差异. 地理科学进展, 2010, 29 (12): 1555- 1561.
doi: 10.11820/dlkxjz.2010.12.012 |
|
Ma X Y , Pei T . Exploratory spatial data analysis of regional economic disparities in Beijing during 2001-2007. Progress in Geography, 2010, 29 (12): 1555- 1561.
doi: 10.11820/dlkxjz.2010.12.012 |
|
蒲英霞, 葛莹, 马荣华, 等. 基于ESDA的区域经济空间差异分析——以江苏省为例. 地理研究, 2005, 24 (6): 965- 974.
doi: 10.3321/j.issn:1000-0585.2005.06.016 |
|
Pu Y X , Ge Y , Ma R H , et al. Analyzing regional economic disparities based on ESDA. Geographical Research, 2005, 24 (6): 965- 974.
doi: 10.3321/j.issn:1000-0585.2005.06.016 |
|
石春娜, 王立群. 我国森林资源质量评价体系研究进展. 世界林业研究, 2007, 20 (2): 68- 72.
doi: 10.3969/j.issn.1001-4241.2007.02.012 |
|
Shi C N , Wang L Q . A review of researches on evaluation system of forest resources quality in China. World Forestry Research, 2007, 20 (2): 68- 72.
doi: 10.3969/j.issn.1001-4241.2007.02.012 |
|
吴玉鸣, 田斌. 省域环境库兹涅茨曲线的扩展及其决定因素——空间计量经济学模型实证. 地理研究, 2012, 31 (4): 627- 640. | |
Wu Y M , Tian B . The extension of regional environmental Kuznets curve and its determinants:an empirical research based on spatial econometrics model. Geographical Research, 2012, 31 (4): 627- 640. | |
许姝明, 王立群. 基于环境库兹涅茨曲线的森林资源变化问题研究评述. 世界林业研究, 2010, 23 (6): 13- 17. | |
Xu S M , Wang L Q . Research review of forest resources change based on EKC. World Forestry Research, 2010, 23 (6): 13- 17. | |
徐拓远, 梁文远, 李凡, 等. 森林火灾与森林质量——来自集体林权制度改革的证据. 林业经济, 2017, 39 (9): 81- 87. | |
Xu T Y , Liang W Y , Li F , et al. Forest fires and forest quality——evidence from the collective forest tenure reform. Forstry Economics, 2017, 39 (9): 81- 87. | |
薛龙飞, 罗小锋, 李兆亮, 等. 中国森林碳汇的空间溢出效应与影响因素——基于大陆31个省(市、区)森林资源清查数据的空间计量分析. 自然资源学报, 2017, 32 (10): 1744- 1754.
doi: 10.11849/zrzyxb.20160912 |
|
Xue L F , Luo X F , Li Z L , et al. Spatial spillover effects and influencing factors of forest carbon sink in China——spatial econometric analysis based on forest resources inventory in 31 provinces of the mainland of China. Journal of Natural Resources, 2017, 32 (10): 1744- 1754.
doi: 10.11849/zrzyxb.20160912 |
|
杨明海, 张红霞, 孙亚男, 等. 中国八大综合经济区科技创新能力的区域差距及其影响因素研究. 数量经济技术经济研究, 2018, 35 (4): 3- 19. | |
Yang M H , Zhang H X , Sun Y N , et al. The study of the science and technology innovation ability in eight comprehensive economic areas of China. The Journal of Quantitative & Technical Economics, 2018, 35 (4): 3- 19. | |
余东华, 张明志. "异质性难题"化解与碳排放EKC再检验——基于门限回归的国别分组研究. 中国工业经济, 2016, (7): 57- 73. | |
Yu D H , Zhang M Z . Resolution of "the heterogeneity difficulty" and re-verification of the carbon emission EKC——Based on the country grouping test under the threshold regression. China Industrial Economics, 2016, (7): 57- 73. | |
赵惠勋, 周晓峰, 王义弘, 等. 森林质量评价标准和评价指标. 东北林业大学学报, 2000, 28 (5): 58- 61.
doi: 10.3969/j.issn.1000-5382.2000.05.014 |
|
Zhao H X , Zhou X F , Wang Y H , et al. Quality of forest evaluation standard and evaluation target. Journal of Northeast Forestry University, 2000, 28 (5): 58- 61.
doi: 10.3969/j.issn.1000-5382.2000.05.014 |
|
郑长德, 刘帅. 基于空间计量经济学的碳排放与经济增长分析. 中国人口·资源与环境, 2011, 21 (5): 80- 86.
doi: 10.3969/j.issn.1002-2104.2011.05.014 |
|
Zheng C D , Liu S . Empirical research of carbon emission and economic growth in China based on the spatial econometric analysis. China Population, Resources and Environment, 2011, 21 (5): 80- 86.
doi: 10.3969/j.issn.1002-2104.2011.05.014 |
|
郑小贤. 森林资源变化规律的理论研究. 北京林业大学学报, 2007, 29 (6): 185- 189.
doi: 10.3321/j.issn:1000-1522.2007.06.032 |
|
Zheng X X . Theory research of forest resource transformation. Journal of Beijing Forestry University, 2007, 29 (6): 185- 189.
doi: 10.3321/j.issn:1000-1522.2007.06.032 |
|
朱震锋, 曹玉昆. 国有林区经济增长与资源消耗的伪脱钩风险识别及破解思路. 林业科学, 2017, 53 (4): 139- 149. | |
Zhu Z F , Cao Y K . Pseudo decoupling risk of economic growth and resource consumption identifying and cracking in the national forestry area. Scientia Silvae Sinicae, 2017, 53 (4): 139- 149. | |
Allen J C , Barnes D F . The causes of deforestation in developing countries. Ann Assoc Amer Geogr, 1985, 75 (2): 163- 184.
doi: 10.1111/j.1467-8306.1985.tb00079.x |
|
Anselin L . Spatial econometrics:methods and models. Studies in Operational Regional Science, 1988, 85 (411): 310- 330. | |
Bhattarai M , Hammig M . Governance, economic policy, and the environmental Kuznets curve for natural tropical forests. Environment & Development Economics, 2004, 9 (3): 367- 382. | |
Brower L P , Castilleja G , Peralta A , et al. Quantitative changes in forest quality in a principal overwintering area of the monarch butterfly in Mexico, 1971-1999. Conservation Biology, 2010, 16 (2): 346- 359. | |
Culas R J . Deforestation and the environmental Kuznets curve:An institutional perspective. Ecological Economics, 2007, 61 (2): 429- 437. | |
Dietz T , Rosa E A . Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (1): 175- 179.
doi: 10.1073/pnas.94.1.175 |
|
Dudley N, Schlaepfer R, Jackson W, et al. 2006. Forest quality: assessing forests at a landscape scale. London: Sterling, VA, Earthscan. | |
Elhorst J P. 2014. Spatial panel data models. spatial econometrics. Springer Berlin Heidelberg, 37-93. | |
Foster A D , Rosenzweig M R . Economic growth and the rise of forests. Quarterly Journal of Economics, 2003, 118 (2): 601- 637.
doi: 10.1162/003355303321675464 |
|
Galeotti M , Lanza A , Pauli F . Reassessing the environmental Kuznets curve for CO2 emissions:a robustness exercise. Ecological Economics, 2006, 57 (1): 152- 163.
doi: 10.1016/j.ecolecon.2005.03.031 |
|
Grossman G M , Krueger A B . Environmental Impacts of a north American free trade agreement. Social Science Electronic Publishing, 1991, 8 (2): 223- 250. | |
He J , Richard P . Environmental Kuznets curve for CO2 in Canada. Ecological Economics, 2010, 69 (5): 1083- 1093.
doi: 10.1016/j.ecolecon.2009.11.030 |
|
LeSage J P, Pace R.K. 2009. Pace. Introduction to Spatial Econometrics. CRC Press. | |
MartíNez-Zarzoso I , Bengochea-Morancho A . Pooled mean group estimation of an environmental Kuznets curve for CO2. Economics Letters, 2004, 82 (1): 121- 126.
doi: 10.1016/j.econlet.2003.07.008 |
|
Richmond A K , Kaufmann R K . Is there a turning point in the relationship between income and energy use and/or carbon emissions?. Ecological Economics, 2006, 56 (2): 176- 189.
doi: 10.1016/j.ecolecon.2005.01.011 |
|
Tole L . Sources of deforestation in tropical developing countries. Environmental Management, 1998, 22 (1): 19.
doi: 10.1007/s002679900081 |
|
Viña A , Mcconnell W J , Yang H , et al. Effects of conservation policy on China's forest recovery. Science Advances, 2016, 2 (3): 4563- 4566. | |
Wang S , Liu C , Wilson B . Is China in a later stage of a U-shaped forest resource curve? A re-examination of empirical evidence. Forest Policy & Economics, 2007, 10 (1): 1- 6. |
[1] | 张滨,吕洁华. 要素投入驱动、产业结构升级与林业经济增长的空间效应解析——以黑龙江省重点国有林区为例[J]. 林业科学, 2020, 56(6): 142-151. |
[2] | 侯孟阳,姚顺波. 森林资源与经济增长的EKC关系检验——基于省际面板数据的实证研究[J]. 林业科学, 2019, 55(12): 113-122. |
[3] | 朱震锋, 曹玉昆. 国有林区经济增长与资源消耗的伪脱钩风险识别及破解思路[J]. 林业科学, 2017, 53(4): 139-149. |
[4] | 廖文梅. 南方集体林区林业经济增长的产业结构演变及其差异分析——基于13个省(区)1995—2011年的统计数据[J]. 林业科学, 2014, 50(8): 131-140. |
[5] | 王乃江;张文辉;同金霞;范少辉;陆元昌;Callie Jo Schweitzer . 黄土高原蔡家川林场森林质量评价[J]. 林业科学, 2010, 46(9): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||