丁雷龙,李强子,杜鑫,等. 2016. 基于无人机图像颜色指数的植被识别. 国土资源遥感,28(1):78-86. (Ding L L, Li Q Z, Du X, et al. 2016. Vegetation extraction method based on color indices from UAV images. Remote Sensing for Land and Resources, 28(1):78-86.[in Chinese]) 费运巧,刘文萍,陆鹏飞,等. 2017. 基于无人机图像分形特征的油松受灾级别判定. 计算机应用研究, 34(4):1253-1256. (Fei Y Q, Liu W P, Lu P F, et al. 2017. Judgment on disaster classification of Chinese pine based on fractal features in UAV image. Application Research of Computers, 34(4):1253-1256.[in Chinese]) 韩阳阳, 王焱, 项杨, 等. 2015. 基于Maxent生态位模型的松材线虫在中国的适生区预测分析. 南京林业大学学报:自然科学版, 39(1):6-10. (Han Y Y, Wang Y, Xiang Y, et al. 2015. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on Maxent ecological niche model. Journal of Nanjing Forestry University:Natural Sciences Edition, 39(1):6-10.[in Chinese]) 胡根生,张学敏,梁栋,等. 2013. 基于加权支持向量数据描述的遥感图像病害松树识别. 农业机械学报,44(5):258-263. (Hu G S, Zhang X M, Liang D, et al. 2013. Infected pine recognition in remote sensing images based on weighted support vector data description. Transactions of the Chinese Society for Agricultural Machinery, 44(5):258-263.[in Chinese]) 李卫正,申世广,何鹏,等. 2014. 低成本小型无人机遥感定位病死木方法. 林业科技开发, 28(6):102-106. (Li W Z, Shen S G, He P, et al. 2014. A precisely positioning technique by remote sensing the dead trees in stands with inexpensive small UAV. China Forestry Science & Technology, 28(6):102-106.[in Chinese]) 刘丽,匡纲要. 2009. 图像纹理特征提取方法综述. 中国图象图形学报,14(4):622-635. (Liu L, Kuang G Y. 2009. Overview of image textural feature extraction methods. Journal of Image and Graphics, 14(4):622-635.[in Chinese]) 吕晓君,王君,喻卫国,等. 2016. 无人机监测林业有害生物初探. 湖北林业科技,45(4):30-33. (Lü X J, Wang J, Yu W G, et al. 2016. Study on monitoring forest pests and diseases by Unmanned Aerial Vehicle. Hubei Forestry Science & Technology, 45(4):30-33.[in Chinese]) 宋熙煜,周利莉,李中国,等. 2015. 图像分割中的超像素方法研究综述. 中国图象图形学报, 20(5):599-608. (Song X Y, Zhou L L, Li Z G, et al. 2015. Review on superpixel methods in image segmentation. Journal of Image and Graphics, 20(5):599-608.[in Chinese]) 王成波. 2015. 变色松树的图像识别与地面调查综合技术研究. 北京:中国科学院大学博士学位论文. (Wang C B. 2015.Study on integrated technology of image recognition and field investigation of infested pine trees. Beijing:PhD thesis of University of Chinese Academy of Sciences.[in Chinese]) 徐洪儒,李颖超,李镇宇. 2006. 红脂大小蠹在中国成灾原因及扩散趋势分析. 植物检疫, 20(5):278-280. (Xu H R, Li Y C, Li Z Y. 2006. The analysis of outbreak reason and spread directions of dendroctonus valens. Plant Quarantine, 20(5):278-280.[in Chinese]) 赵建兴.2006. 红脂大小蠹生物防治研究. 北京:中国林业科学研究院博士学位论文. (Zhao J X. 2006.Study on biological control of red turpentine beetle dendroctonus valens(Coleoptera::Scolytidae)in China. Beijing:PhD thesis of Chinese Academy of Forestry.[in Chinese]) Achanta R, Shaji A, Smith K, et al. 2012. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis & Machine Intelligence, 34(11):2274-2282. Chen J S, Li Z Q, Huang B. 2017. Linear spectral clustering superpixel. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 26(7):3317-3330. Dhillon I S, Guan Y Q, Kulis B. 2004. Kernel K-means:spectral clustering and normalized cuts. proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 551-556. Dhillon I S, Guan Y Q, Kulis B. 2007. Weighted graph cuts without eigenvectors a multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11):1944-1957. Hall R J, Castilla G, White J C, et al. 2016. Remote sensing of forest pest damage:A review and lessons learned from a Canadian perspective. The Canadian Entomologist, 148(S1):S296-S356. Kim H, Lee S, Lee D, et al. 2015. Real-time human pose estimation and gesture recognition from depth images using superpixels and svm classifier. Sensors, 15(6):12410-12427. Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence, 14(2):1137-1145. Laliberte A S, Rango A. 2009. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Transactions on Geoscience & Remote Sensing, 47(3):761-770. Liu W P, Wu L, Hung C. 2013. Texture segmentation based on AdaBoost classifier using fractal feature-lacunarity. Journal of Information & Computational Science, 10(4):997-1006. Meyer G E, Neto J C. 2008. Verification of color vegetation indices for automated crop imaging applications. Computers & Electronics in Agriculture, 63(2):282-293. Rahman M A, Wang Y. 2016. Optimizing intersection-over-union in deep neural networks for image segmentation. International Symposium on Visual Computing, Springer, 234-244. Rodriguez G R, Thomas S, Cerro J, et al. 2012. A real-time method to detect and track moving objects (datmo) from unmanned aerial vehicles (uavs) using a single camera. Remote Sensing, 4(4):1090-1111. Shi J, Malik J. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905. Suykens J A K, Vandewalle J. 1999. Least squares support vector machine classifiers. Neural Processing Letters, 9(3):293-300. Torresan C, Berton A, Carotenuto F, et al. 2017. Forestry applications of UAVS in Europe:a review. International Journal of Remote Sensing, 38(8-10):2427-2447. Von Luxburg U. 2007. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416. Woebbecke D M, Meyer G E, von Bargen K, et al. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1):259-269. Yan Z L, Sun J, Don O, et al. 2005. The red turpentine beetle, Dendroctonus valens Leconte (Scolytidae):an exotic invasive pest of pine in china. Biodiversity and Conservation, 14(7):1735-1760. Yuan Y, Hu X Y. 2016. Random forest and objected-based classification for forest pest extraction from uav aerial imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(B1):1093-1098. |