欢迎访问林业科学,今天是

›› 2013, Vol. 49 ›› Issue (1): 114-119.doi: 10.11707/j.1001-7488.20130117

• 论文 • 上一篇    下一篇

非线性混合效应模型参数估计方法分析

符利勇, 张会儒, 李春明, 唐守正   

  1. 中国林业科学研究院资源信息研究所 北京 100091
  • 收稿日期:2012-04-10 修回日期:2012-11-12 出版日期:2013-01-25 发布日期:2013-01-25
  • 通讯作者: 唐守正

Analysis of Nonlinear Mixed Effects Model Parameter Estimation Methods

Fu Liyong, Zhang Huiru, Li Chunming, Tang Shouzheng   

  1. Research Institute of Forest Resources Information Techniques, CAF Beijing 100091
  • Received:2012-04-10 Revised:2012-11-12 Online:2013-01-25 Published:2013-01-25

摘要: 非线性混合效应模型是针对回归函数依赖于固定效应和随机效应的非线性关系而建立的。一阶线性化算法(FO)和条件一阶线性化算法(FOCE)为2种计算非线性混合效应模型参数的常用线性化算法。本文基于FOCE算法,提出一种改进的随机效应参数计算方法,并利用树高生长数据和模拟数据对3种算法进行分析和比较。结果表明: 改进的FOCE算法得到的随机效应参数更能反映个体间的随机差异,并且拟合效果更好。

关键词: 非线性混合效应模型, 一阶线性化算法(FO), 条件一阶线性化算法(FOCE), 改进的FOCE算法

Abstract: Nonlinear mixed effects model (NLMEM) is the model in which both the fixed and random effects occur nonlinearly in the model function. First-order linearization algorithm (FO) and conditional first-order linearization algorithm (FOCE) are two commonly used linearization algorithms to calculate the parameters in NLMEM. We proposed an improved method for calculating random effects parameters based on FOCE algorithm in this study. We also analyzed and compared the three algorithms using height growth data set and simulation data sets. The results are: random effects parameters obtained from improved FOCE algorithm can more really reflected the individual random variations and also make a high efficient fit.

Key words: nonlinear mixed effects model(NLMEM), first-order linearization algorithm(FO), conditional first-order linearization algorithm(FOCE), improved FOCE algorithm

中图分类号: