林业科学 ›› 2024, Vol. 60 ›› Issue (7): 105-116.doi: 10.11707/j.1001-7488.LYKX20220705
殷方宇,都亚敏,李珠,蒋佳荔*
收稿日期:
2022-10-20
出版日期:
2024-07-25
发布日期:
2024-08-19
通讯作者:
蒋佳荔
基金资助:
Fangyu Yin,Yamin Du,Zhu Li,Jiali Jiang*
Received:
2022-10-20
Online:
2024-07-25
Published:
2024-08-19
Contact:
Jiali Jiang
摘要:
目的: 实时、同步测量楸木早材和晚材的水分吸着-解吸等温线以及木纤维组织、木射线、导管尺寸的变化比率,揭示早材和晚材不同类型组织的尺寸变化规律及其相互作用机理。方法: 以楸木心材同一生长轮内的早材和晚材为研究对象,采用动态水分吸附分析仪联用视频白光显微镜,在水分吸着-解吸阶段[温度设置为(25.0±0.1)℃,相对湿度变化过程设置为0%→95%→0%,以相对湿度10%为梯度进行升湿、降湿],同步测量早材和晚材的水分吸着-解吸等温线以及木纤维组织、木射线、导管尺寸的变化比率;在平衡含水率恒定阶段,考察“尺寸变化行为”与“平衡含水率”之间是否存在滞后现象。结果: 1) 在水分吸附全过程中,早材和晚材均表现出明显的吸湿滞后现象,绝对滞后值随相对湿度升高先增大后减小,相对湿度70%时达到最大值;与早材相比,晚材的绝对滞后值较小。2) 早材和晚材木纤维组织、木射线尺寸的变化比率均随相对湿度升高而增大;导管弦向直径变化比率随相对湿度的变化模式与之相反,在相对湿度95%时,早材和晚材导管弦向直径的变化比率分别为0.945和0.918。3) 随着木射线与导管之间直线长度(L)增加,木射线弦向尺寸的变化比率减小,L≥200 μm后不再发生变化;轴向尺寸的变化比率未改变或改变很小,在相对湿度95%时,早材和晚材木射线弦向尺寸变化比率的最大值分别为1.051和1.038。4) 在水分吸附循环过程中,早材和晚材木纤维组织、木射线、导管尺寸的变化比率均表现出明显的湿胀滞后现象,湿胀滞后值随相对湿度升高先增大后减小,相对湿度70%时达到最大值。5) 在水分吸着-解吸过程中,早材和晚材组织“刚达到含水率平衡态”的尺寸变化比率与“保持含水率平衡态180 min”后的尺寸变化比率相比未发生明显变化,可被认为是相等的。结论: 木质素对绝对滞后值的影响大于半纤维素;在水分吸着过程中,木纤维组织和木射线的湿胀行为对导管产生挤压使其收缩;在水分解吸过程中,木纤维组织的干缩行为对导管产生拉伸使其扩张;晚材组织对导管的挤压和拉伸大于早材组织;木纤维组织对木射线的湿胀-干缩行为起抑制作用,相较于早材木纤维组织,晚材木纤维组织对木射线弦向湿胀-干缩行为的抑制作用更显著;木材吸湿滞后行为是引起湿胀滞后现象的原因之一;早材和晚材组织均可视为同步达到“含水率平衡态”和“尺寸变化平衡态”,即“尺寸变化行为”与“平衡含水率”之间不存在滞后现象。
中图分类号:
殷方宇,都亚敏,李珠,蒋佳荔. 楸木不同类型组织的湿胀-干缩行为[J]. 林业科学, 2024, 60(7): 105-116.
Fangyu Yin,Yamin Du,Zhu Li,Jiali Jiang. Shrinkage and Swelling Behavior of Different Types of Tissues in Catalpa bungei Wood[J]. Scientia Silvae Sinicae, 2024, 60(7): 105-116.
表2
楸木早材和晚材水分吸着阶段和平衡含水率恒定阶段的尺寸变化比率与含水率①"
HR(%) | 试样 Sample | CW(%) | RC(WFT-T) | RC(WFT-L) | RC(WR-S) | RC(WR-T) | RC(WR-L) | RC(V-T) | |||||||||||||
X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | X1 | X2 | ||||||||
10 | EW | 1.34 | 1.38 | 1.004 1 | 1.003 9 | 1.001 8 | 1.002 1 | 1.008 1 | 1.008 5 | 1.007 2 | 1.006 9 | 1.001 4 | 1.001 0 | 0.992 1 | 0.991 7 | ||||||
LW | 1.73 | 1.74 | 1.007 6 | 1.008 0 | 1.000 7 | 1.001 0 | 1.007 2 | 1.007 0 | 1.002 3 | 1.002 7 | 1.003 9 | 1.003 9 | 0.985 0 | 0.985 5 | |||||||
20 | EW | 2.55 | 2.61 | 1.008 3 | 1.008 0 | 1.003 2 | 1.003 4 | 1.016 3 | 1.016 6 | 1.013 1 | 1.013 5 | 1.003 0 | 1.003 3 | 0.985 1 | 0.985 4 | ||||||
LW | 3.20 | 3.24 | 1.016 5 | 1.016 5 | 1.001 2 | 1.001 5 | 1.013 2 | 1.013 2 | 1.006 4 | 1.006 0 | 1.008 1 | 1.008 6 | 0.976 4 | 0.976 1 | |||||||
30 | EW | 3.62 | 3.67 | 1.013 1 | 1.013 4 | 1.005 3 | 1.005 1 | 1.024 0 | 1.024 4 | 1.018 0 | 1.018 6 | 1.005 3 | 1.005 0 | 0.977 4 | 0.977 7 | ||||||
LW | 4.45 | 4.44 | 1.023 3 | 1.023 6 | 1.002 0 | 1.002 5 | 1.021 2 | 1.021 3 | 1.009 1 | 1.009 2 | 1.011 3 | 1.011 7 | 0.963 9 | 0.963 4 | |||||||
40 | EW | 4.47 | 4.49 | 1.018 4 | 1.018 9 | 1.006 2 | 1.005 9 | 1.035 1 | 1.035 6 | 1.022 1 | 1.022 7 | 1.007 6 | 1.008 0 | 0.972 0 | 0.972 3 | ||||||
LW | 5.67 | 5.68 | 1.030 5 | 1.030 4 | 1.002 8 | 1.003 1 | 1.029 4 | 1.029 5 | 1.012 2 | 1.012 6 | 1.013 2 | 1.013 5 | 0.955 5 | 0.955 5 | |||||||
50 | EW | 5.80 | 5.82 | 1.024 3 | 1.024 7 | 1.007 6 | 1.007 7 | 1.043 3 | 1.043 7 | 1.026 3 | 1.026 6 | 1.009 2 | 1.009 2 | 0.968 1 | 0.968 4 | ||||||
LW | 6.93 | 6.94 | 1.036 2 | 1.036 6 | 1.003 4 | 1.003 4 | 1.037 4 | 1.037 7 | 1.015 3 | 1.015 0 | 1.016 0 | 1.016 4 | 0.944 1 | 0.944 1 | |||||||
60 | EW | 7.01 | 7.07 | 1.031 5 | 1.031 4 | 1.009 7 | 1.009 5 | 1.050 4 | 1.050 8 | 1.032 2 | 1.032 7 | 1.011 1 | 1.011 0 | 0.964 3 | 0.964 8 | ||||||
LW | 8.30 | 8.36 | 1.044 1 | 1.044 4 | 1.004 0 | 1.004 4 | 1.044 5 | 1.044 0 | 1.019 0 | 1.019 2 | 1.019 3 | 1.019 1 | 0.937 0 | 0.937 7 | |||||||
70 | EW | 8.26 | 8.33 | 1.037 2 | 1.037 6 | 1.011 9 | 1.012 3 | 1.057 2 | 1.057 2 | 1.036 1 | 1.036 3 | 1.013 3 | 1.013 6 | 0.959 0 | 0.959 1 | ||||||
LW | 9.77 | 9.77 | 1.051 3 | 1.051 0 | 1.004 6 | 1.004 4 | 1.050 2 | 1.050 0 | 1.022 3 | 1.022 0 | 1.021 2 | 1.021 5 | 0.929 3 | 0.929 6 | |||||||
80 | EW | 9.71 | 9.74 | 1.044 4 | 1.044 2 | 1.014 3 | 1.014 9 | 1.066 1 | 1.066 5 | 1.042 2 | 1.041 5 | 1.013 0 | 1.013 3 | 0.953 2 | 0.953 8 | ||||||
LW | 11.43 | 11.45 | 1.060 2 | 1.060 3 | 1.005 6 | 1.006 0 | 1.057 4 | 1.057 7 | 1.026 1 | 1.026 6 | 1.024 5 | 1.024 6 | 0.925 1 | 0.925 0 | |||||||
90 | EW | 12.63 | 12.66 | 1.054 6 | 1.054 1 | 1.016 5 | 1.016 3 | 1.073 2 | 1.072 9 | 1.047 0 | 1.047 2 | 1.021 0 | 1.021 7 | 0.948 4 | 0.947 8 | ||||||
LW | 14.33 | 14.37 | 1.069 5 | 1.069 6 | 1.006 5 | 1.006 0 | 1.065 1 | 1.065 0 | 1.031 9 | 1.031 6 | 1.028 0 | 1.028 5 | 0.920 6 | 0.921 0 | |||||||
95 | EW | 14.27 | 14.29 | 1.060 4 | 1.060 8 | 1.018 3 | 1.018 3 | 1.079 4 | 1.079 1 | 1.051 6 | 1.051 0 | 1.027 4 | 1.027 0 | 0.945 0 | 0.945 5 | ||||||
LW | 15.66 | 15.70 | 1.077 2 | 1.077 7 | 1.007 3 | 1.007 6 | 1.071 0 | 1.071 5 | 1.038 1 | 1.038 4 | 1.032 3 | 1.032 1 | 0.918 3 | 0.918 8 |
表3
楸木早材和晚材水分解吸阶段和平衡含水率恒定阶段的尺寸变化比率与含水率①"
HR(%) | 试样 Sample | CW(%) | RC(WFT-T) | RC(WFT-L) | RC(WR-S) | RC(WR-T) | RC(WR-L) | RC(V-T) | |||||||||||||
X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | X3 | X4 | ||||||||
95 | EW | 14.27 | 14.29 | 1.060 3 | 1.060 8 | 1.018 2 | 1.018 8 | 1.079 4 | 1.079 0 | 1.051 0 | 1.051 1 | 1.027 4 | 1.027 7 | 0.945 2 | 0.945 9 | ||||||
LW | 15.66 | 15.70 | 1.077 0 | 1.077 2 | 1.007 3 | 1.007 0 | 1.071 6 | 1.072 0 | 1.038 3 | 1.038 3 | 1.032 5 | 1.032 0 | 0.918 5 | 0.918 2 | |||||||
90 | EW | 13.75 | 13.76 | 1.058 4 | 1.058 8 | 1.017 4 | 1.017 1 | 1.077 5 | 1.007 8 | 1.049 4 | 1.049 0 | 1.026 5 | 1.026 4 | 0.953 4 | 0.953 4 | ||||||
LW | 15.05 | 15.09 | 1.074 3 | 1.074 0 | 1.007 1 | 1.007 8 | 1.069 3 | 1.069 0 | 1.037 0 | 1.037 6 | 1.031 0 | 1.031 1 | 0.927 4 | 0.927 1 | |||||||
80 | EW | 12.22 | 12.30 | 1.051 2 | 1.050 9 | 1.015 2 | 1.014 6 | 1.073 2 | 1.073 3 | 1.045 2 | 1.045 3 | 1.024 1 | 1.024 6 | 0.962 1 | 0.962 3 | ||||||
LW | 13.56 | 13.59 | 1.069 2 | 1.069 7 | 1.006 7 | 1.007 0 | 1.064 2 | 1.064 5 | 1.034 2 | 1.034 4 | 1.029 3 | 1.029 0 | 0.935 1 | 0.935 8 | |||||||
70 | EW | 11.04 | 11.07 | 1.045 3 | 1.045 5 | 1.013 3 | 1.013 4 | 1.068 0 | 1.068 2 | 1.041 3 | 1.041 0 | 1.022 0 | 1.022 3 | 0.968 0 | 0.968 4 | ||||||
LW | 12.33 | 12.41 | 1.064 4 | 1.064 8 | 1.006 2 | 1.006 3 | 1.059 1 | 1.059 7 | 1.031 0 | 1.031 6 | 1.028 1 | 1.028 5 | 0.944 2 | 0.944 3 | |||||||
60 | EW | 9.73 | 9.77 | 1.038 8 | 1.038 8 | 1.010 9 | 1.010 4 | 1.060 5 | 1.060 3 | 1.036 2 | 1.036 6 | 1.019 3 | 1.018 7 | 0.972 6 | 0.972 8 | ||||||
LW | 10.83 | 10.85 | 1.057 2 | 1.057 9 | 1.005 4 | 1.005 9 | 1.053 4 | 1.054 0 | 1.027 1 | 1.027 3 | 1.025 2 | 1.025 6 | 0.950 4 | 0.950 4 | |||||||
50 | EW | 8.36 | 8.39 | 1.031 6 | 1.031 0 | 1.008 7 | 1.008 4 | 1.052 1 | 1.052 6 | 1.030 6 | 1.030 9 | 1.016 4 | 1.016 4 | 0.975 4 | 0.975 9 | ||||||
LW | 9.31 | 9.32 | 1.049 2 | 1.049 3 | 1.004 7 | 1.004 7 | 1.046 7 | 1.046 6 | 1.023 3 | 1.022 9 | 1.055 0 | 1.055 1 | 0.957 2 | 0.957 6 | |||||||
40 | EW | 7.01 | 7.03 | 1.024 4 | 1.024 4 | 1.007 1 | 1.007 6 | 1.043 3 | 1.043 2 | 1.025 1 | 1.025 4 | 1.014 3 | 1.014 4 | 0.979 1 | 0.978 5 | ||||||
LW | 7.79 | 7.84 | 1.040 1 | 1.040 3 | 1.004 0 | 1.004 4 | 1.037 5 | 1.037 7 | 1.019 4 | 1.019 0 | 1.018 4 | 1.018 0 | 0.966 3 | 0.966 4 | |||||||
30 | EW | 5.57 | 5.58 | 1.018 3 | 1.018 8 | 1.005 6 | 1.005 3 | 1.033 1 | 1.033 2 | 1.020 0 | 1.020 7 | 1.011 0 | 1.011 2 | 0.984 0 | 0.984 2 | ||||||
LW | 6.21 | 6.24 | 1.031 1 | 1.031 0 | 1.003 1 | 1.002 9 | 1.028 0 | 1.028 5 | 1.015 2 | 1.015 4 | 1.015 3 | 1.015 7 | 0.974 5 | 0.974 3 | |||||||
20 | EW | 4.10 | 4.17 | 1.012 1 | 1.012 5 | 1.003 6 | 1.003 7 | 1.022 7 | 1.022 0 | 1.014 4 | 1.014 4 | 1.008 3 | 1.008 0 | 0.989 1 | 0.989 6 | ||||||
LW | 4.57 | 4.57 | 1.023 5 | 1.023 3 | 1.002 3 | 1.002 3 | 1.019 5 | 1.019 6 | 1.011 0 | 1.011 5 | 1.011 1 | 1.011 3 | 0.984 0 | 0.984 2 | |||||||
10 | EW | 2.39 | 2.44 | 1.007 2 | 1.007 4 | 1.002 1 | 1.002 6 | 1.012 4 | 1.012 6 | 1.008 6 | 1.008 8 | 1.005 1 | 1.005 6 | 0.994 4 | 0.994 3 | ||||||
LW | 2.65 | 2.68 | 1.013 4 | 1.013 0 | 1.001 3 | 1.001 0 | 1.010 6 | 1.010 8 | 1.006 3 | 1.006 3 | 1.006 2 | 1.006 4 | 0.991 3 | 0.991 8 |
成俊卿, 杨家驹, 刘 鹏. 1992. 中国木材志. 北京: 中国林业出版社. | |
Cheng J Q, Yang J J, Liu P. 1992. Wood records of China. Beijing: China Forestry Publishing House. [in Chinese] | |
高玉磊. 2019. 高温热处理杉木的吸湿吸水性变化规律及其机理研究. 北京: 中国林业科学研究院. | |
Gao Y L. 2019. Study on the changes and its mechanism of moisture adsorption and absorption properties of high temperature heat treated Chinese fir wood. Beijing: Chinese Academy of Forestry. [in Chinese] | |
刘盛全, 张 锦, 胡治华, 等. “皖青1号”人工林楸树物理力学性质的研究. 安徽农业大学学报, 2008, 35 (4): 473- 477. | |
Liu S Q, Zhang J, Hu Z H, et al. Physical and mechanical properties of Catalpa bungei (Wanqing number 1). Journal of Anhui Agricultural University, 2008, 35 (4): 473- 477. | |
麻文俊, 张守攻, 王军辉, 等. 楸树新无性系木材的物理力学性质. 林业科学, 2013, 49 (9): 126- 134. | |
Ma W J, Zhang S G, Wang J H, et al. Timber physical and mechanical properties of new Catalpa bungei clones. Scientia Silvae Sinicae, 2013, 49 (9): 126- 134. | |
欧阳白, 李 珠, 蒋佳荔. 楸木早/晚材水分吸着与湿胀行为. 林业科学, 2021, 57 (5): 176- 183. | |
Ouyang B, Li Z, Jiang J L. Hygroscopicity and swelling behavior of Catalpa bungei earlywood and latewood. Scientia Silvae Sinicae, 2021, 57 (5): 176- 183. | |
吴 玮. 2015. 楸木材性及其变化规律的研究. 南京: 南京林业大学. | |
Wu W. 2015. Study on the variance of wood structure and properties of Catalpa bungei C. A. Mey. Nanjing: Nanjing Forestry University. [in Chinese] | |
尹思慈. 1996. 木材学. 北京: 中国林业出版社. | |
Yin S C. 1996. Woodology. Beijing: China Forestry Publishing House. [in Chinese] | |
Bertaud F, Holmbom B. Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Science and Technology, 2004, 38 (4): 245- 256. | |
Bonnet M, Courtier-Murias D, Faure P, et al. NMR determination of sorption isotherms in earlywood and latewood of Douglas fir. Identification of bound water components related to their local environment. Holzforschung, 2017, 71 (6): 481- 490.
doi: 10.1515/hf-2016-0152 |
|
Boyd J D. Relating lignification to microfibril angle differences between tangential and radial faces of all layers in wood cells. Drevársky Výskum, 1974, 19 (2): 41- 54. | |
Carmeliet J, Van Den Abeele K. Application of the Preisach-Mayergoyz space model to analyze moisture effects on the nonlinear elastic response of rock. Geophysical Research Letters, 2002, 29 (7): 1144- 1148. | |
Carmeliet J, Van Den Abeele K. Poromechanical approach describing the moisture influence on the non-linear quasi-static and dynamic behaviour of porous building materials. Materials and Structures, 2004, 37 (4): 271- 280.
doi: 10.1007/BF02480635 |
|
Chau T, Ma E N, Cao J Z. Moisture adsorption and hygroexpansion of paraffin wax emulsion-treated southern pine (Pinus spp. ). BioResources, 2015, 10 (2): 2719- 2731. | |
Christensen G N, Kelsey K E. Die geschwindigkeit der wasserdampfsorption durch holz. Holz Als Roh- Und Werkstoff, 1959, 17 (5): 178- 188.
doi: 10.1007/BF02608810 |
|
Derome D, Griffa M, Koebel M, et al. Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. Journal of Structural Biology, 2011, 173 (1): 180- 190.
doi: 10.1016/j.jsb.2010.08.011 |
|
Derome D, Kulasinski K, Zhang C, et al. 2018. Using modeling to understand the hygromechanical and hysteretic behavior of the S2 cell wall layer of wood//Geitmann A, Gril J. Plant Biomechanics. Cham: Springer, 247−269. | |
Dong F, Olsson A M, Salmén L. Fibre morphological effects on mechano-sorptive creep. Wood Science and Technology, 2010, 44 (3): 475- 483.
doi: 10.1007/s00226-009-0300-3 |
|
Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 2013, 47 (1): 141- 161.
doi: 10.1007/s00226-012-0514-7 |
|
Garcia R A, Rosero-Alvarado J, Hernández R E. Full-field moisture-induced strains of the different tissues of tamarack and red oak woods assessed by 3D digital image correlation. Wood Science and Technology, 2020a, 54 (1): 139- 159.
doi: 10.1007/s00226-019-01145-5 |
|
Garcia R A, Rosero-Alvarado J, Hernández R E. Swelling strain assessment of fiber and parenchyma tissues in the tropical hardwood Ormosia coccinea. Wood Science and Technology, 2020b, 54 (6): 1447- 1461.
doi: 10.1007/s00226-020-01223-z |
|
Hæggström E, Koponen T, Karppinen T, et al. Ultrasonic study on hysteresis in modulus of elasticity in Norway spruce as a function of year ring. AIP Conference Proceedings. Brunswick, Maine (USA). AIP, 2006, 820 (1): 1366- 1369. | |
Hill C A S, Norton A, Newman G. The water vapor sorption behavior of natural fibers. Journal of Applied Polymer Science, 2009, 112 (3): 1524- 1537.
doi: 10.1002/app.29725 |
|
Hou S Y, Wang J Y, Yin F Y, et al. Moisture sorption isotherms and hysteresis of cellulose, hemicelluloses and lignin isolated from birch wood and their effects on wood hygroscopicity. Wood Science and Technology, 2022, 56 (4): 1087- 1102.
doi: 10.1007/s00226-022-01393-y |
|
Joffre T, Isaksson P, Dumont P J J, et al. A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics, 2016, 56 (5): 723- 733.
doi: 10.1007/s11340-015-0119-9 |
|
Kitin P, Funada R. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. IAWA Journal, 2016, 37 (2): 315- 331.
doi: 10.1163/22941932-20160136 |
|
Kulasinski K, Guyer R, Derome D, et al. Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous interface. Biomacromolecules, 2015, 16 (9): 2972- 2978.
doi: 10.1021/acs.biomac.5b00878 |
|
Kurata Y, Mori Y, Ishida A, et al. Variation in hemicellulose structure and assembly in the cell wall associated with the transition from earlywood to latewood in Cryptomeria japonica. Journal of Wood Chemistry and Technology, 2018, 38 (3): 254- 263.
doi: 10.1080/02773813.2018.1434206 |
|
Li S, Li X, Link R, et al. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China. Forests, 2019, 10 (8): 662- 678.
doi: 10.3390/f10080662 |
|
Lu Y F, Pignatello J J. History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environmental Science & Technology, 2004, 38 (22): 5853- 5862. | |
Ma E, Nakao T, Zhao G J, et al. Relation between moisture sorption and hygroexpansion of sitka spruce during adsorption processes. Wood and Fiber Science, 2010, 42 (3): 304- 309. | |
Ma Q, Rudolph V. Dimensional change behavior of Caribbean pine using an environmental scanning electron microscope. Drying Technology, 2006, 24 (11): 1397- 1403.
doi: 10.1080/07373930600952743 |
|
McIntosh D C. Shrinkage of red oak and beech. Forest Products Journal, 1955, 5 (10): 355- 359. | |
Morschauser C R. 1954. The effect of rays on differential shrinkage of red oak (Quercus borealis Michx. F. ). Mich: University of Michigan. | |
Nopens M, Riegler M, Hansmann C, et al. Simultaneous change of wood mass and dimension caused by moisture dynamics. Scientific Reports, 2019, 9 (1): 10309.
doi: 10.1038/s41598-019-46381-8 |
|
Olsson A M, Salmén L. 2003. The softening behavior of hemicelluloses related to moisture//Gatenholm P, Tenkanen M, eds. ACS Symposium Series. Washington, DC: American Chemical Society, 184−197. | |
Ouyang B, Yin F Y, Li Z, et al. Study on the moisture-induced swelling/shrinkage and hysteresis of Catalpa bungei wood across the growth ring. Holzforschung, 2022, 76 (8): 711- 721.
doi: 10.1515/hf-2021-0222 |
|
Pang S S, Herritsch A. Physical properties of earlywood and latewood of Pinus radiata D. Don: Anisotropic shrinkage, equilibrium moisture content and fibre saturation point. Holzforschung, 2005, 59 (6): 654- 661.
doi: 10.1515/HF.2005.105 |
|
Patera A, Bonnin A, Mokso R. Micro- and nano-scales three-dimensional characterisation of softwood. Journal of Imaging, 2021, 7 (12): 263- 280.
doi: 10.3390/jimaging7120263 |
|
Patera A, Derome D, Griffa M, et al. Hysteresis in swelling and in sorption of wood tissue. Journal of Structural Biology, 2013, 182 (3): 226- 234.
doi: 10.1016/j.jsb.2013.03.003 |
|
Patera A, Van den Bulcke J, Boone M N, et al. Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. Wood Science and Technology, 2018, 52 (1): 91- 114.
doi: 10.1007/s00226-017-0960-3 |
|
Rafsanjani A, Derome D, Wittel F K, et al. Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. Composites Science and Technology, 2012, 72 (6): 744- 751.
doi: 10.1016/j.compscitech.2012.02.001 |
|
Redman A L, Bailleres H, Perré P. Characterization of viscoelastic, shrinkage and transverse anatomy properties of four Australian hardwood species. Wood Material Science and Engineering, 2011, 6 (3): 95- 104.
doi: 10.1080/17480272.2010.535014 |
|
Ritter G J, Mitchell R L. Fibers studies contributing to the differential shrinkage of cellulose. Paper Industries, 1952, 33, 1189- 1193. | |
Schulgasser K, Witztum A. How the relationship between density and shrinkage of wood depends on its microstructure. Wood Science and Technology, 2015, 49 (2): 389- 401.
doi: 10.1007/s00226-015-0699-7 |
|
Siau J F. 2012. Transport processes in wood. Cham: Springer. | |
Walker J C F. Primary wood processing: principles and practice. International Forestry Review, 2006, 9 (1): 97- 98. | |
Yang T T, Ma E N, Cao J Z. Effects of lignin in wood on moisture sorption and hygroexpansion tested under dynamic conditions. Holzforschung, 2018, 72 (11): 943- 950.
doi: 10.1515/hf-2017-0198 |
|
Zhan T Y, Lyu J X, Eder M. In situ observation of shrinking and swelling of normal and compression Chinese fir wood at the tissue, cell and cell wall level. Wood Science and Technology, 2021, 55 (5): 1359- 1377.
doi: 10.1007/s00226-021-01321-6 |
|
Zhang X X, Li J, Yu Y, et al. Investigating the water vapor sorption behavior of bamboo with two sorption models. Journal of Materials Science, 2018, 53 (11): 8241- 8249.
doi: 10.1007/s10853-018-2166-y |
|
Zhou H Z, Xu R, Ma E N. Effects of removal of chemical components on moisture adsorption by wood. BioResources, 2016, 11 (2): 3110- 3122. |
[1] | 殷方宇,欧阳白,蒋佳荔,李珠,吕建雄. 木材多尺度结构的干缩湿胀研究进展[J]. 林业科学, 2023, 59(7): 145-154. |
[2] | 欧阳白,李珠,蒋佳荔. 楸木早/晚材水分吸着与湿胀行为[J]. 林业科学, 2021, 57(5): 176-183. |
[3] | 杨昇,李改云. 金丝楸木材化学成分的不均一性[J]. 林业科学, 2021, 57(1): 169-177. |
[4] | 娄明华, 张会儒, 雷相东, 李春明, 臧颢. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径-树高模型[J]. 林业科学, 2017, 53(6): 67-76. |
[5] | 谢恒星 张振华 杨润亚 刘继龙 蔡焕杰. 龙爪槐树干液流相对于气象因子的滞后效应分析[J]. 林业科学, 2007, 43(5): 106-110. |
[6] | 李镇宇 王燕 陈华盛 许志春 路永波. 油松对赤松毛虫的诱导化学防御及滞后诱导抗性[J]. 林业科学, 2000, 36(1): 66-70. |
[7] | 林伟奇 肖羽柏 陈莉. 广州地区木材平衡含水率及吸湿滞后的研究[J]. , 1993, 29(2): 139-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||