|
何敏娟, 王希珺, 李 征. 往复荷载下正交胶合木剪力墙的承载能力与变形模式研究. 土木工程学报, 2020, 53 (9): 60- 67.
|
|
He M J, Wang X J, Li Z. Cyclic load capacity and deformation mode of cross-laminated timber shear walls. China Civil Engineering Journal, 2020, 53 (9): 60- 67.
|
|
龚迎春, 任海青, 丁青锋. 国产落叶松正交胶合木胶层剪切强度评价. 木材科学与技术, 2021, 35 (2): 49- 53.
doi: 10.12326/j.2096-9694.2020077
|
|
Gong Y C, Ren H Q, Ding Q F. Evaluation of bonding shear strength of cross-laminated timber fabricated with domestic larch. Chinese Journal of Wood Science and Technology, 2021, 35 (2): 49- 53.
doi: 10.12326/j.2096-9694.2020077
|
|
《木结构设计手册》编辑委员会. 2021. 木结构设计手册. 4版. 北京: 中国建筑工业出版社.
|
|
Editorial Committee of Design manual of Wood Structures. 2021. Design manual of wood structures. 4th ed. Beijing: China Architecture & Building Press. [in Chinese]
|
|
孙 超, 肖从真, 李建辉, 等. 正交胶合木剪力墙抗震性能试验研究. 建筑科学, 2021, 37 (9): 1- 12.
|
|
Sun C, Xiao C Z, Li J H, et al. Experiment research on seismic behavior of cross-laminated timber shear wall. Building Science, 2021, 37 (9): 1- 12.
|
|
孙晓峰, 何敏娟, 李 征. 往复荷载下预应力正交胶合木剪力墙抗侧力性能研究. 土木工程学报, 2020, 53 (3): 11- 18.
|
|
Sun X F, He M J, Li Z. Lateral performance of post-tensioned cross-laminated timber shear walls. China Civil Engineering Journal, 2020, 53 (3): 11- 18.
|
|
王菲彬, 王昕萌, 杨树明, 等. 国产杉木不同层板厚度对正交胶合木力学性能的影响. 林业科学, 2020, 56 (11): 168- 175.
doi: 10.11707/j.1001-7488.20201118
|
|
Wang F B, Wang X M, Yang S M, et al. Effect of different laminate thickness on mechanical properties of cross-laminated timber made from Chinese fir. Scientia Silvae Sinicae, 2020, 56 (11): 168- 175.
doi: 10.11707/j.1001-7488.20201118
|
|
王志强, 付红梅, 戴骁汉, 等. 不同树种木材复合交错层压胶合木的力学性能. 中南林业科技大学学报, 2014, 34 (12): 141- 145.
doi: 10.3969/j.issn.1673-923X.2014.12.026
|
|
Wang Z Q, Fu H M, Dai X H, et al. Experimental study on mechanical properties of cross-laminated timber with different tree species wood. Journal of Central South University of Forestry & Technology, 2014, 34 (12): 141- 145.
doi: 10.3969/j.issn.1673-923X.2014.12.026
|
|
杨 洋, 张 蕾, 李 能, 等. 户外用木材耐光老化技术研究进展. 林产工业, 2020, 57 (9): 49- 52.
|
|
Yang Y, Zhang L, Li N, et al. The review of research progress on anti-photodegradation technology of outdoor wood. China Forest Products Industry, 2020, 57 (9): 49- 52.
|
|
岳 孔, 陆 栋, 宋学松. 利用傅里叶变换红外光谱分析高温改性对杨木强度等级的影响. 光谱学与光谱分析, 2023, 43 (3): 848- 853.
doi: 10.3964/j.issn.1000-0593(2023)03-0848-06
|
|
Yue K, Lu D, Song X S. Influence of thermal modification on poplar strength class by Fourier infrared spectroscopy analysis. Spectroscopy and Spectral Analysis, 2023, 43 (3): 848- 853.
doi: 10.3964/j.issn.1000-0593(2023)03-0848-06
|
|
岳 孔, 陆 栋, 戴长路, 等. 高温中胶合木构件胶缝界面剪切断裂能研究. 华中科技大学学报(自然科学版), 2021, 49 (4): 86- 90.
|
|
Yue K, Lu D, Dai C L, et al. Study on shear fracture energy for bondlines in glulam at high temperature. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (4): 86- 90.
|
|
岳 孔, 陆 栋, 胡文杰, 等. 高温中木材顺纹弦面抗剪强度. 林业科学, 2022, 58 (1): 111- 118.
doi: 10.11707/j.1001-7488.20220112
|
|
Yue K, Lu D, Hu W J, et al. Parallel-to-grain tangential shear strength of wood at elevated temperatures under oxygen-free conditions. Scientia Silvae Sinicae, 2022, 58 (1): 111- 118.
doi: 10.11707/j.1001-7488.20220112
|
|
岳 孔, 宋旭磊, 程秀才, 等. 杉木胶合木湿应力研究. 林业工程学报, 2019a, 4 (4): 35- 40.
|
|
Yue K, Song X L, Cheng X C, et al. Study on moisture stresses in Chinese fir glued laminated timber. Journal of Forestry Engineering, 2019a, 4 (4): 35- 40.
|
|
岳 孔, 刘伟庆, 程秀才, 等. 高温中花旗松结构材顺纹抗压强度试验研究. 华中科技大学学报(自然科学版), 2019b, 47 (8): 44- 49.
|
|
Yue K, Liu W Q, Cheng X C, et al. Experimental study on parallel-to-grain compressive strength of structural Douglas fir wood exposed to elevated temperatures. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019b, 47 (8): 44- 49.
|
|
岳 孔, 宋旭磊, 焦学凯, 等. 高温预处理对足尺胶合木梁力学性能的影响. 林业科学, 2020, 56 (4): 128- 134.
doi: 10.11707/j.1001-7488.20200414
|
|
Yue K, Song X L, Jiao X K, et al. Mechanical properties of full-scale glulam beam made of thermally treated lamellas. Scientia Silvae Sinicae, 2020, 56 (4): 128- 134.
doi: 10.11707/j.1001-7488.20200414
|
|
张 晋, 刘得龙, 张 强, 等. 正交胶合木墙体耐火极限试验及数值模拟. 华南理工大学学报(自然科学版), 2021, 49 (4): 9- 19.
|
|
Zhang J, Liu D L, Zhang Q, et al. Fire resistance test and numerical simulation of cross-laminated timber wall. Journal of South China University of Technology (Natural Science Edition), 2021, 49 (4): 9- 19.
|
|
Almeida T, Almeida D, Chahud E, et al. Mechanical performance of wood under artificial and natural weathering treatments. BioResources, 2019, 14 (3): 6267- 6277.
doi: 10.15376/biores.14.3.6267-6277
|
|
Brandner R, Flatscher G, Ringhofer A, et al. Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 2016, 74 (3): 331- 351.
doi: 10.1007/s00107-015-0999-5
|
|
Cogulet A, Blanchet P, Landry V. Wood degradation under UV irradiation: a lignin characterization. Journal of Photochemistry and Photobiology B, 2016, Biology,158, 184- 191.
|
|
Cademartori P, Santos P, Serrano L, et al. Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Industrial Crops and Products, 2013, 45, 360- 366.
doi: 10.1016/j.indcrop.2012.12.048
|
|
Esteves B, Graça J, Pereira H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 2008, 62 (3): 344- 351.
doi: 10.1515/HF.2008.057
|
|
Frangi A, Fontana M, Hugi E, et al. Experimental analysis of cross-laminated timber panels in fire. Fire Safety Journal, 2009, 44 (8): 1078- 1087.
doi: 10.1016/j.firesaf.2009.07.007
|
|
Gavric I, Popovski M. 2014. Design models for CLT shear walls and assemblies based on connection properties. Proceedings of the INTER Conference, Bath. UK, 1-4.
|
|
He Z X, Qi Y R, Zhang G, et al. Mechanical properties and dimensional stability of poplar wood modified by pre-compression and post-vacuum-thermo treatments. Polymers, 2022, 14 (8): 1571.
doi: 10.3390/polym14081571
|
|
Izzi M, Casagrande D, Bezzi S, et al. Seismic behaviour of Cross-Laminated Timber structures: a state-of-the-art review. Engineering Structures, 2018, 170, 42- 52.
doi: 10.1016/j.engstruct.2018.05.060
|
|
Kippel M, Leyder C, Frangi A, et al. Fire tests on loaded cross-laminated timber wall and floor elements. Fire Safety Science, 2014, 11, 626- 639.
doi: 10.3801/IAFSS.FSS.11-626
|
|
Kukk V, Horta R, Püssa M, et al. Impact of cracks to the hygrothermal properties of CLT water vapour resistance and air permeability. Energy Procedia, 2017, 132, 741- 746.
doi: 10.1016/j.egypro.2017.10.019
|
|
Leichti R, Anderson E, Sutt E, et al. 2006. Sheathing nail bending yield strength-role in shear wall performances. Proceedings of the World Conference on Timber Engineering, Portland: Oregon State University Conference Services, 203–210.
|
|
Mirzaei G, Mohebby B, Ebrahimi G. Glulam beam made from hydrothermally treated poplar wood with reduced moisture induced stresses. Construction and Building Materials, 2017, 135, 386- 393.
doi: 10.1016/j.conbuildmat.2016.12.178
|
|
Mirzaei G, Mohebby B, Ebrahimi G. Technological properties of glulam beams made from hydrothermally treated poplar wood. Wood Material Science & Engineering, 2018, 13 (1): 36- 44.
|
|
Nairn J A. Predicting layer cracks in cross-laminated timber with evaluations of strategies for suppressing them. European Journal of Wood and Wood Products, 2019, 77 (3): 405- 419.
doi: 10.1007/s00107-019-01399-7
|
|
Santos J A. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology, 2000, 34 (1): 39- 43.
doi: 10.1007/s002260050006
|
|
Sawata K, Yasumura M. Determination of embedding strength of wood for dowel-type fasteners. Journal of Wood Science, 2002, 48 (2): 138- 146.
doi: 10.1007/BF00767291
|
|
Schneider J, Karacabeyli E, Popovski M, et al. Damage assessment of connections used in cross-laminated timber subject to cyclic loads. Journal of Performance of Constructed Facilities, 2014, 28 (6): A4014008.
doi: 10.1061/(ASCE)CF.1943-5509.0000528
|
|
Shi X L, Yue K, Jiao X K, et al. Experimental investigation into lateral performance of cross-laminated timber shear walls made from fast-growing poplar wood. Wood Material Science & Engineering, 2023, 18 (4): 1212- 1227.
|
|
Uibel T, Blaß H J. Load carrying capacity of joints with dowel type fasteners in solid wood panels. CIB-W18 Meeting Thirty-nine, 2006, Florence, Italy.
|
|
Wiesner F, Randmael F, Wan W, et al. Structural response of cross-laminated timber compression elements exposed to fire. Fire Safety Journal, 2017, 91, 56- 67.
doi: 10.1016/j.firesaf.2017.05.010
|
|
Yue K, Li X, Jiao X K, et al. Strength grading of Chinese poplar wood for structural use following thermal modification. Polymer Testing, 2023a, 123, 108032.
doi: 10.1016/j.polymertesting.2023.108032
|
|
Yue K, Qian J, Wu P, et al. Experimental analysis of thermally-treated Chinese poplar wood with focus on structural application. Industrial Crops and Products, 2023b, 197, 116612.
doi: 10.1016/j.indcrop.2023.116612
|
|
Yue K, Song X L, Jiao X K, et al. An experimental study of flexural behavior of glulam beams made out of thermally treated fast-growing poplar laminae. Wood and Fiber Science, 2020, 52 (2): 152- 164.
doi: 10.22382/wfs-2020-014
|
|
Yue K, Wang L, Xia J, et al. Experimental research on mechanical properties of laminated poplar wood veneer/plastic sheet composites. Wood and Fiber Science, 2019, 51 (3): 320- 331.
doi: 10.22382/wfs-2019-030
|
|
Yue K, Wu J H, Wang F, et al. Mechanical properties of Douglas fir wood at elevated temperatures under nitrogen conditions. Journal of Materials in Civil Engineering, 2022, 34 (2): 04021434.
doi: 10.1061/(ASCE)MT.1943-5533.0004072
|