Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (7): 35-51.doi: 10.11707/j.1001-7488.LYKX20250349
• Reviews • Previous Articles Next Articles
Junhui Wang1,*(),Changjun Ding1,Wei Li2,Keming Luo3,Jun Wang4,Weixi Zhang1,Shihui Niu4,Miaomiao Zhang1,Xiyang Zhao5,Liangjiao Xue6,Hengfu Yin7
Received:
2025-06-01
Online:
2025-07-20
Published:
2025-07-25
Contact:
Junhui Wang
E-mail:wangjh@caf.ac.cn
CLC Number:
Junhui Wang,Changjun Ding,Wei Li,Keming Luo,Jun Wang,Weixi Zhang,Shihui Niu,Miaomiao Zhang,Xiyang Zhao,Liangjiao Xue,Hengfu Yin. Advances in Genetic Breeding Research of Chinese Forest Trees in 2024[J]. Scientia Silvae Sinicae, 2025, 61(7): 35-51.
Table 1
Information on nationally approved superior forest tree varieties (2024)"
良种名称 Cultivar name | 树种 Species | 良种编号 Registration code | 选育单位 Breeding institution |
‘中桐1号’泡桐 Paulownia fortunei ‘Zhongtong 1’ | 泡桐 P. tomentosa | 国S-SV-PF-001-2024 Guo S-SV-PF-001-2024 | 中国林业科学研究院经济林研究所 Research Institute of Non-timber Forestry, Chinese Academy of Forestry |
‘中桐16号’泡桐 Paulownia fortunei × P. tomentosa ‘Zhongtong 16’ | 泡桐 P. tomentosa | 国S-SV-PF-002-2024 Guo S-SV-PF-002-2024 | 中国林业科学研究院经济林研究所 Research Institute of Non-timber Forestry, Chinese Academy of Forestry |
欧洲云杉捷克种源 Picea abies ‘Czech Provenance’ | 欧洲云杉 P. abies | 国S-SP-PA-003-2024 Guo S-SP-PA-003-2024 | 中国林业科学研究院林业研究所等 Research Institute of Forestry, Chinese Academy of Forestry, et al. |
‘热林518’尾叶桉 Eucalyptus urophylla ‘Relin 518’ | 尾叶桉 E. urophylla | 国S-SC-EU-004-2024 Guo S-SC-EU-004-2024 | 中国林业科学研究院热带林业研究所 Research Institute of Tropical Forestry, Chinese Academy of Forestry |
‘京丰2号’杨 Populus ‘Jingfeng 2’ | 杨树 Populus spp. | 国S-SC-PJ-005-2024 Guo S-SC-PJ-005-2024 | 北京林业大学等 Beijing Forestry University, et al. |
火炬松家系 W11 Pinus taeda Family ‘W11’ | 火炬松 P. taeda | 国S-SF-PT-006-2024 Guo S-SF-PT-006-2024 | 华南农业大学 South China Agricultural University |
火炬松家系 W14 Pinus taeda Family ‘W14’ | 火炬松 P. taeda | 国S-SF-PT-007-2024 Guo S-SF-PT-007-2024 | 华南农业大学 South China Agricultural University |
‘红粉’大岛樱 Prunus speciosa × P. campanulata ‘Hongfen’ | 大岛樱 P. speciosa | 国S-SV-PS-008-2024 Guo S-SV-PS-008-2024 | 浙江省林业科学研究院等 Zhejiang Academy of Forestry, et al. |
‘华仲30号’杜仲 Eucommia ulmoides ‘Huazhong 30’ | 杜仲 E. ulmoides | 国S-SV-EU-009-2024 Guo S-SV-EU-009-2024 | 中国林业科学研究院经济林研究所 Research Institute of Non-timber Forestry, Chinese Academy of Forestry |
‘凤选1号’花椒 Zanthoxylum bungeanum ‘Fengxuan 1’ | 花椒 Z. bungeanum | 国S-SV-ZB-010-2024 Guo S-SV-ZB-010-2024 | 西北农林科技大学 Northwest A& F University |
‘宝光’葡萄 Vitis vinifera × V. labrusca ‘Baoguang’ | 葡萄 Vitis vinifera | 国S-SV-VV-011-2024 Guo S-SV-VV-011-2024 | 河北省农林科学院昌黎果树研究所 Changli Fruit Tree Research Institute, Hebei Academy of Agriculture and Forestry |
‘蜜光’葡萄 Vitis vinifera×V. labrusca ‘Miguang’ | 葡萄 V. vinifera | 国S-SV-VV-012-2024 Guo S-SV-VV-012-2024 | 河北省农林科学院昌黎果树研究所 Changli Fruit Tree Research Institute, Hebei Academy of Agriculture and Forestry |
‘礼品2号’核桃 Juglans regia ‘Lipin 2’ | 核桃 J. regia | 国S-SV-JR-013-2024 Guo S-SV-JR-013-2024 | 辽宁省经济林研究所等 Liaoning Institute of Economic Forestry and Research Institute of Forestry, Chinese Academy of Forestry, et al. |
‘辽宁1号’核桃 Juglans regia ‘Liaoning 1’ | 核桃 J. regia | 国S-SV-JR-014-2024 Guo S-SV-JR-014-2024 | 辽宁省经济林研究所等 Liaoning Institute of Economic Forestry and Research Institute of Forestry, Chinese Academy of Forestry, et al. |
‘中宁奇’核桃 Juglans hindsii × J. regia ‘zhongningqi’ | 核桃 J. regia | 国S-SV-JH-015-2024 Guo S-SV-JH-015-2024 | 中国林业科学研究院林业研究所 Research Institute of Forestry, Chinese Academy of Forestry |
‘强桑3号’桑 Morus alba ‘Qiangsang 3’ | 桑树 Morus alba | 国S-SV-MA-016-2024 Guo S-SV-MA-016-2024 | 浙江省农业科学院 Zhejiang Academy of Agricultural Sciences |
‘强桑5号’桑 Morus alba ‘Qiangsang 5’ | 桑树 M. alba | 国S-SV-MA-017-2024 Guo S-SV-MA-017-2024 | 浙江省农业科学院 Zhejiang Academy of Agricultural Sciences |
‘皖叶5号’桑 Morus alba ‘Wanye 5’ | 桑树 M. alba | 国S-SV-MA-018-2024 Guo S-SV-MA-018-2024 | 安徽省农业科学院蚕桑研究所 Sericulture Research Institute, Anhui Academy of Agricultural Sciences |
‘皖叶6号’桑 Morus alba ‘Wanye 6’ | 桑树 M. alba | 国S-SV-MA-019-2024 Guo S-SV-MA-019-2024 | 安徽省农业科学院蚕桑研究所 Sericulture Research Institute, Anhui Academy of Agricultural Sciences |
‘豆果’油橄榄 Olea europaea ‘Arbequina’ | 油橄榄 O. europaea | 国S-ETS-OE-020-2024 Guo S-ETS-OE-020-2024 | 中国林业科学研究院林业研究所等 Research Institute of Forestry, Chinese Academy of Forestry, et al. |
‘科罗莱卡’油橄榄 Olea europaea ‘Koroneiki’ | 油橄榄 O. europaea | 国S-ETS-OE-021-2024 Guo S-ETS-OE-021-2024 | 中国林业科学研究院林业研究所等 Research Institute of Forestry, Chinese Academy of Forestry, et al. |
吴城油松一代无性系种子园种子 Pinus tabuliformis ‘wuchengyousongyidaiwuxingxizhongziyuanzhongzi’ | 油松 P. tabuliformis | 国R-CSO(1)-PT-001-2024 Guo R-CSO(1)-PT-001-2024 | 山西省关帝山国有林管理局吴城种子园 Wucheng Seed Orchard, Guandi Mountain National Forest Administration of Shanxi Province |
‘中成4号’杨 Populus deltoides ‘Zhongcheng 4’ | 美洲黑杨 P. deltoides | 国R-SC-PD-002-2024 Guo R-SC-PD-002-2024 | 中国林业科学研究院林业研究所 Research Institute of Forestry, Chinese Academy of Forestry |
曹文昱, 王军辉, 杨艳红, 等. 楸树远缘杂交种花器官性状变异分析. 植物研究, 2024, 44 (2): 220- 231. | |
Cao W Y, Wang J H, Yang Y H, et al. Analysis on variation of floral organ traits in distant hybrids of Catalpa bungei. Bulletin of Botanical Research, 2024, 44 (2): 220- 231. | |
曹 铮, 邵 慧, 孙 龙, 等. 基于高光谱激光雷达的多视角木叶三维重建研究. 量子电子学报, 2024, 41 (4): 659- 670. | |
Cao Z, Shao H, Sun L, et al. Research of multi-view 3D reconstruction of wood leaf based on hyperspectral lidar. Chinese Journal of Quantum Electronics, 2024, 41 (4): 659- 670. | |
戴晓港, 韩峭子, 尹佟明. 杨属派间5个种特异性InDel引物及在派间杂交子代鉴别中的应用. 林业科学, 2024, 60 (2): 78- 86. | |
Dai X G, Han Q Z, Yin T M. Species-specific Indel markers in five species from different poplar sects and their application in identification of inter-specific hybrids. Scientia Silvae Sinicae, 2024, 60 (2): 78- 86. | |
戴晓港, 魏铭辰. 簸箕柳×三蕊柳种特异性KASP标记开发及种间杂交子代鉴别. 林业科学, 2024, 60 (4): 119- 126. | |
Dai X G, Wei M C. Development of species-specific KASP markers and identification of inter-specific hybrids from Salix suchowensis × S. triandra. Scientia Silvae Sinicae, 2024, 60 (4): 119- 126. | |
国家林业和草原局. 2024. 国家林业和草原局公告(2024年第15号)(2024年度林木良种名录). | |
National Forestry and Grassland Administration. 2024. Announcement of the National Forestry and Grassland Administration (No. 15 of 2024) (List of elite tree varieties for 2024). https://www.forestry.gov.cn/c/www/gkzfwj/603205.jhtml[in Chinese] | |
胡云帆, 张怀清, 安 锋, 等. 基于激光点云的橡胶树参数反演与数字孪生构建. 西北林学院学报, 2024, 39 (2): 1- 12. | |
Hu Y F, Zhang H Q, An F, et al. Hevea brasiliensis property retrieval and construction of digital twin based on laser scanning data. Journal of Northwest Forestry University, 2024, 39 (2): 1- 12. | |
姜 波, 安新民. 基因组精准编辑技术及其在林木育种中的应用. 南京林业大学学报(自然科学版), 2025, 49 (1): 11- 20. | |
Jiang B, An X M. Precise genomic editing technology and its application in the improvement of woody plants. Journal of Nanjing Forestry University (Natural Sciences Edition), 2025, 49 (1): 11- 20. | |
康向阳. 2024. 关于我国林木育种向智能分子设计育种发展的思考. 北京林业大学学报, 46(3): 1−7. | |
Kang X Y. 2024. Thoughts on the development of forest tree breeding towards intelligent molecular design breeding in China. Journal of Beijing Forestry University, 46(3): 1−7. [in Chinese] | |
李 骋. 2024. 基于RGB点云的自动化单木树冠分割及参数提取研究. 杭州: 浙江农林大学. | |
Li C. 2024. Research on automated single tree canopy segmentation and parameter extraction based on RGB point cloud. Hangzhou: Zhejiang A&F University. [in Chinese] | |
李小凡. 2024. 无人机LiDAR和多光谱数据协同的树种分类研究. 南京: 南京信息工程大学. | |
Li X F. 2024. Research on tree species classification based on collaborative UAV LiDAR and multispectral data. Nanjing: Nanjing University of Information Science and Technology. [in Chinese] | |
李 振. 基因组学在林木遗传育种领域的应用与展望. 河南农业, 2024, (22): 39- 41. | |
Li Z. Application and prospect of genomics in forest genetic breeding. Henan Agriculture, 2024, (22): 39- 41. | |
廖福兰, 林文树, 刘浩然. 基于无人机LiDAR点云栅格化和Mask R-CNN算法的单木树冠分割. 农业工程学报, 2024, 40 (23): 258- 266. | |
Liao F L, Lin W S, Liu H R. Single tree crown segmentation based on UAV LiDAR point cloud rasterization and Mask R-CNN algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (23): 258- 266. | |
林子阮, 刘洪利, 韦鸿钰, 等. 基于高光谱成像技术的罗竹竹材含水率检测. 现代农业装备, 2024, 45 (6): 2- 9. | |
Lin Z R, Liu H L, Wei H Y, et al. Detection of moisture content in S. funghomii McClure based on hyperspectral imaging technology. Modern Agricultural Equipment, 2024, 45 (6): 2- 9. | |
刘翠双, 李际红, 牛牧歌, 等. 流苏树花粉活力、柱头可授性和不同属间的远缘杂交初探. 北京林业大学学报, 2024, 46 (4): 14- 27. | |
Liu C S, Li J H, Niu M G, et al. Preliminary study on pollen vitality, stigma receptivity and distant hybridization between different genera of Chionanthus retusus. Journal of Beijing Forestry University, 2024, 46 (4): 14- 27. | |
刘 帅. 2024. 基于深度学习的树木CT图像年轮分割方法研究. 济南: 山东建筑大学. | |
Liu S. 2024. Research on method of tree ring segmentation of CT image based on deep learning. Jinan: Shandong Jianzhu University | |
刘志洋, 韩忠玲, 程勇翔, 等. 基于CT扫描的多枝柽柳年轮生长参数测量及验证. 生态学报, 2024, 44 (20): 9401- 9411. | |
Liu Z Y, Han Z L, Cheng Y X, et al. Measurement and verification of tree-ring growth parameters of Tamarix ramosissima based on CT scanning. Acta Ecologica Sinica, 2024, 44 (20): 9401- 9411. | |
潘政尚, 马开森, 龙 依, 等. 改进分类回归树模型的青冈枝叶点云分类研究. 南京林业大学学报(自然科学版), 2024, 48 (4): 123- 131. | |
Pan Z S, Ma K S, Long Y, et al. An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48 (4): 123- 131. | |
孙晓明. 2024. 基于点云与RGB图像融合的苹果树表型估测研究. 杨凌: 西北农林科技大学. | |
Sun X M. 2024. Estimation of apple tree phenotypes based on the fusion of point clouds and RGB images. Yangling: Northwest A&F University. [in Chinese] | |
唐佳俊. 2024. 基于机载激光雷达及机器学习算法的单木胸径估测及反演. 贵阳: 贵州大学. | |
Tang J J. 2024. Estimation and inversion of individual tree diameter at breast height (DBH) using airborne LiDAR and machine learning algorithms. Guiyang: Guizhou University. [in Chinese] | |
万柯慧, 徐德志, 边黎明, 等. 杉木单交F1代的表型变异及杂种优势分析. 森林与环境学报, 2024, 44 (5): 476- 483. | |
Wan K H, Xu D Z, Bian L M, et al. Analysis of F1 representative variation and heterosis of Chinese fir. Journal of Forest and Environment, 2024, 44 (5): 476- 483. | |
魏瑞研, 张卫华, 徐 放, 等. 红锥生长性状的全基因组选择与优良子代早期评选. 林业科学, 2024, 60 (12): 83- 91. | |
Wei R Y, Zhang W H, Xu F, et al. Genomic selection for growth traits and early selection of superior progeny in Castanopsis hystrix. Scientia Silvae Sinicae, 2024, 60 (12): 83- 91. | |
闫晓丽, 王书柔, 丁新宇, 等. 异源三倍体(大果榆×四倍体白榆)榆树鉴定及代谢组学分析. 林业与生态科学, 2024, 39 (4): 432- 439. | |
Yan X L, Wang S R, Ding X Y, et al. Identification and metabolomic analysis of allotriploid elm (Ulmus macrocarpa × tetraploid Ulmus pumila). Forestry and Ecological Sciences, 2024, 39 (4): 432- 439. | |
张 宇, 张怀清, 安 锋, 等. 基于计算机模拟模型的林木冠层太阳短波辐射定量分析方法. 林业科学, 2024, 60 (4): 16- 30. | |
Zhang Y, Zhang H Q, An F, et al. A quantitative analysis method of solar shortwave radiation within forest canopy based on a computer simulation model. Scientia Silvae Sinicae, 2024, 60 (4): 16- 30. | |
赵汗青, 王 强, 庞晓明, 等. ‘京枣39’离体多倍体诱导及其增殖、生根培养体系优化. 北京林业大学学报, 2024, 46 (6): 118- 126. | |
Zhao H Q, Wang Q, Pang X M, et al. In vitro polyploid induction and optimization of its proliferation and rooting culture system for ‘Jingzao 39’. Journal of Beijing Forestry University, 2024, 46 (6): 118- 126. | |
赵钰婷, 陈冬瑶, 杨 柳, 等. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究, 2024, 8 (1): 1- 8. | |
Zhao Y T, Chen D Y, Yang L, et al. Analysis of seed vigor and growth characteristics of hybrid progeny in a cross between tetraploid Betula platyphylla × diploid Betula pendula ‘Purple Rain’. Journal of Temperate Forestry Research, 2024, 8 (1): 1- 8. | |
周细斌, 李秀梅, 杨 繁, 等. 基于地空雷达数据的人工池杉林单木信息提取. 湖北林业科技, 2024, 53 (4): 34- 38, 60. | |
Zhou X B, Li X M, Yang F, et al. Individual tree information extraction for artificial Taxodium ascendens forest based on ground-airborne radar data. Hubei Forestry Science and Technology, 2024, 53 (4): 34- 38, 60. | |
An Y, Geng Y, Liu Y, et al. The glutamate receptor gene GLR3.3: a bridge of calcium-mediated root development in poplar. Horticultural Plant Journal, 2024, 10 (6): 1449- 1462.
doi: 10.1016/j.hpj.2023.01.012 |
|
Cao L X, Shi K L, Liu Y Y, et al. Identification of specific genes as molecular markers for rapid and accurate detection of oil-tea Camellia anthracnose pathogen Colletotrichum fructicola in China. Frontiers in Microbiology, 2024a, 15, 1442922.
doi: 10.3389/fmicb.2024.1442922 |
|
Cao Y P, Mo W Z, Li Y L, et al. Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt. BMC Biology, 2024b, 22 (1): 45.
doi: 10.1186/s12915-024-01836-x |
|
Chen H, Wu W Q, Du K, et al. The interplay of growth-regulating factor 5 and BZR1 in coregulating chlorophyll degradation in poplar. Plant, Cell & Environment, 2024a, 47 (10): 3766- 3779. | |
Chen X M, Fan Y T, Guo Y, et al. 2024b. Blue light photoreceptor cryptochrome 1 promotes wood formation and anthocyanin biosynthesis in Populus. Plant, Cell & Environment, 47(6): 2044−2057. | |
Chen X, Zhang Y H, Cheng Y, et al. PcWRKY1 represses transcription of yellow stripe-like 3 (PcYSL3) to negatively regulate radial cadmium transport in poplar stems. Advanced Science, 2025, 12 (1): e2405492.
doi: 10.1002/advs.202405492 |
|
Cheng Y X, Wang Q, Yang L X, et al. MiR319a-mediated salt stress response in poplar. Horticulture Research, 2024, 11 (8): uhae157.
doi: 10.1093/hr/uhae157 |
|
Cui Z Y, Zhang H Q, Liu Y, et al. Fitting maximum crown width height of Chinese fir through ensemble learning combined with fine spatial competition. Plant Phenomics, 2025, 7 (1): 100018.
doi: 10.1016/j.plaphe.2025.100018 |
|
Deng H D, Zhang X Y, Sheng S, et al. High temperature treatment induced production of unreduced 2n pollen in Camellia oleifera. Horticultural Plant Journal, 2024, 10 (3): 879- 896.
doi: 10.1016/j.hpj.2023.10.003 |
|
Diao S, Ding X Y, Luan Q F, et al. Development of 51 K liquid-phased probe array for Loblolly and Slash pines and its application to GWAS of Slash pine breeding population. Industrial Crops and Products, 2024, 216, 118777.
doi: 10.1016/j.indcrop.2024.118777 |
|
Ding C J, Wang Y, Zhang W X, et al. Physiology and transcriptomics reveal that hybridization improves the tolerance of poplar photosynthetic function to salt stress. Trees, 2024, 38 (1): 95- 114.
doi: 10.1007/s00468-023-02468-4 |
|
Ding Z, Zhang H Q, Wang R S, et al. A dual-branch deep learning framework at the grid scale for individual tree segmentation. IEEE Geoscience and Remote Sensing Letters, 2025, 22, 1- 5. | |
Dong L M, Xie Y H, Zhang Y L, et al. Genomic dissection of additive and non-additive genetic effects and genomic prediction in an open-pollinated family test of Japanese larch. BMC Genomics, 2024a, 25 (1): 11.
doi: 10.1186/s12864-023-09891-4 |
|
Fan H J, Xu J, Lu Z C, et al. Analysis of 14–3–3 gene family and functional characterization of DlGRF8/11 modulating flowering time in Ma bamboo (Dendrocalamus latiflorus Munro). Industrial Crops and Products, 2024, 216, 118775.
doi: 10.1016/j.indcrop.2024.118775 |
|
Fang G G, Chen K, Li Y J, et al. ASYMMETRIC LEAVES2 repression confers lobed leaves by regulating lignin biosynthesis of leaf veins in Betula pendula. Industrial Crops and Products, 2024a, 222, 119708.
doi: 10.1016/j.indcrop.2024.119708 |
|
Fang Y J, Xiao X H, Lin J S, et al. Pan-genome and phylogenomic analyses highlight Hevea species delineation and rubber trait evolution. Nature Communications, 2024b, 15, 7232.
doi: 10.1038/s41467-024-51031-3 |
|
Feng L, Teng F, Li N, et al. A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms. Plant Communications, 2024a, 5 (7): 100891.
doi: 10.1016/j.xplc.2024.100891 |
|
Feng Y H, Su Y J, Wang J T, et al. L1-Tree: a novel algorithm for constructing 3D tree models and estimating branch architectural traits using terrestrial laser scanning data. Remote Sensing of Environment, 2024b, 314, 114390.
doi: 10.1016/j.rse.2024.114390 |
|
Fu C, Fu Q C, Wang S S, et al. Genome-wide analysis of fatty acid desaturase genes in moso bamboo (Phyllostachys edulis) reveal their important roles in abiotic stresses responses. BMC Genomics, 2024a, 25 (1): 1138.
doi: 10.1186/s12864-024-11065-9 |
|
Fu R R, Zhu Y X, Liu Y, et al. Shared xerophytic genes and their re-use in local adaptation to aridity in the desert plant Gymnocarpos przewalskii. Molecular Ecology, 2024b, 33 (12): e17380. | |
Fu X K, Xin Y F, Shen G, et al. A cytokinin response factor PtCRF1 is involved in the regulation of wood formation in poplar. Tree Physiology, 2024c, 44 (2): tpad156.
doi: 10.1093/treephys/tpad156 |
|
Gao S Z, Chen X H, Lin M H, et al. A birch ELONGATED HYPOCOTYL 5 gene enhances UV-B and drought tolerance. Forestry Research, 2024a, 4, e022. | |
Gao X G, Hu Y P, Li F D, et al. Sex identification and male–female differences in Ginkgo biloba hybrid F1 generation seedlings. Forests, 2024b, 15 (9): 1636.
doi: 10.3390/f15091636 |
|
Guo M X, Lian Q, Mei Y, et al. Analyzes of pan-genome and resequencing atlas unveil the genetic basis of jujube domestication. Nature Communications, 2024a, 15, 9320.
doi: 10.1038/s41467-024-53718-z |
|
Guo X L, Li J, Li M, et al. 2024b. A molecular module connects abscisic acid with auxin signals to facilitate seasonal wood formation in Populus. Plant, Cell & Environment, 47(11): 4323−4336. | |
Han L Q, Luo X, Zhao Y, et al. A haplotype-resolved genome provides insight into allele-specific expression in wild walnut (Juglans regia L. ). Scientific Data, 2024, 11, 278.
doi: 10.1038/s41597-024-03096-4 |
|
Hao Y Y, Lu F C, Pyo S W, et al. PagMYB128 regulates secondary cell wall formation by direct activation of cell wall biosynthetic genes during wood formation in poplar. Journal of Integrative Plant Biology, 2024, 66 (8): 1658- 1674.
doi: 10.1111/jipb.13717 |
|
He L, Wang Y, Wang Y, et al. Allopolyploidization from two dioecious ancestors leads to recurrent evolution of sex chromosomes. Nature Communications, 2024a, 15, 6893.
doi: 10.1038/s41467-024-51158-3 |
|
He Y, Chen S W, Li C H, et al. Walnut phosphatase 2A proteins interact with basic leucine zipper protein JrVIP1 to regulate osmotic stress response via calcium signaling. Forestry Research, 2024b, 4, e016. | |
Hong L, Wang M X, Feng L Y, et al. 2024. The comparison of the Bayesian method with the classical methods in modeling crown width for Prince Rupprecht larch in northern China. Frontiers in Forests and Global Change, 7: 1405639. | |
Hou L H, Zhang H T, Fan Y K, et al. Genome-wide identification and expression analysis of FD gene family in bamboos. International Journal of Molecular Sciences, 2024a, 25 (23): 13062.
doi: 10.3390/ijms252313062 |
|
Hou Y G, Gan J W, Fan Z Y, et al. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations. Nature Communications, 2024b, 15, 8085.
doi: 10.1038/s41467-024-52376-5 |
|
Hu M X, Guo W, Song X Q, et al. PagJAZ5 regulates cambium activity through coordinately modulating cytokinin concentration and signaling in poplar. New Phytologist, 2024a, 243 (4): 1455- 1471.
doi: 10.1111/nph.19912 |
|
Hu M X, Zhao S T, Zhao Y Q, et al. PagKNAT2/6b regulates tension wood formation and gravitropism by targeting cytokinin metabolism. Tree Physiology, 2024b, 44 (8): tpae090.
doi: 10.1093/treephys/tpae090 |
|
Huang L C, Li Y Y, Lai J X, et al. Superoxide anions induce tension wood formation by promoting cambium cell activity. Plant Physiology, 2024a, 197 (1): kiae672.
doi: 10.1093/plphys/kiae672 |
|
Huang R, Jin Z Y, Zhang D H, et al. Rare variations within the serine/arginine-rich splicing factor PtoRSZ21 modulate stomatal size to determine drought tolerance in Populus. New Phytologist, 2024b, 243 (5): 1776- 1794.
doi: 10.1111/nph.19934 |
|
Jia Y Q, Zhao H M, Niu Y N, et al. Long noncoding RNA from Betula platyphylla, BplncSIR1, confers salt tolerance by regulating BpNAC2 to mediate reactive oxygen species scavenging and stomatal movement. Plant Biotechnology Journal, 2024, 22 (1): 48- 65.
doi: 10.1111/pbi.14164 |
|
Jiao Y, Tan J Q, Guo H, et al. Genome-wide analysis of the KNOX gene family in Moso bamboo: insights into their role in promoting the rapid shoot growth. BMC Plant Biology, 2024, 24 (1): 213.
doi: 10.1186/s12870-024-04883-2 |
|
Jin X, Zhao K, Hu J, et al. PagMYB73A enhances poplar salt tolerance by facilitating adventitious roots elongation and stomata density. Forestry Research, 2024, 4, e003. | |
Lei Y Y, Chen C, Chen W J, et al. The MdIAA29-MdARF4 complex plays an important role in balancing plant height with salt and drought stress responses. Plant Physiology, 2024, 196 (4): 2795- 2811.
doi: 10.1093/plphys/kiae467 |
|
Li J, Chen T T, Gao K, et al. Unravelling the novel sex determination genotype with ‘ZY’ and a distinctive 2.15–2.95 Mb inversion among poplar species through haplotype-resolved genome assembly and comparative genomics analysis. Molecular Ecology Resources, 2024a, 24 (7): e14002.
doi: 10.1111/1755-0998.14002 |
|
Li J, Yu N, Lv C C, et al. Induction of tetraploids in Phellodendron amurense Rupr. and its effects on morphology and alkaloid content. Agronomy, 2024b, 14 (9): 2090.
doi: 10.3390/agronomy14092090 |
|
Li Q, Wang J, Zhang S P, et al. Poplar NF-YA11 alters lignin composition and increases methane yield by upregulating the FERULIC ACID 5-HYDROXYLASE 2 gene. Industrial Crops and Products, 2024c, 222, 119906.
doi: 10.1016/j.indcrop.2024.119906 |
|
Li S, Liu C J, Wang Y G, et al. Three-dimensional visualization of the conducting tissue in a bamboo culm base. Wood Science and Technology, 2024d, 58 (4): 1585- 1603.
doi: 10.1007/s00226-024-01579-6 |
|
Li T K, Lin Z M, Zhu C T, et al. 2024e. Identification and characterization of FBA genes in moso bamboo reveals PeFBA8 related to photosynthetic carbon metabolism. International Journal of Biological Macromolecules, 275(Pt 1): 132885. | |
Li W Y, Dong X, Zhang X T, et al. 2024f. Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana. Horticulture Research, 11(7): uhae141. | |
Li W, Lin Y J, Chen Y L, et al. 2024g. Woody plant cell walls: Fundamentals and utilization. Molecular Plant, 17(1): 112−140. | |
Li Y Q, Xia W, Li Y, et al. 2024h. Expression and drought functional analysis of one circRNA PecircCDPK from moso bamboo (Phyllostachys edulis). PeerJ, 12: e18024. | |
Li Z K, Li H L, Gong X W, et al. 2024i. Prediction and mapping of leaf water content in Populus alba var. pyramidalis using hyperspectral imagery. Plant Methods, 20(1): 184. | |
Liu W X, Liu C X, Chen S, et al. A nearly gapless, highly contiguous reference genome for a doubled haploid line of Populus ussuriensis, enabling advanced genomic studies. Forestry research, 2024a, 4, e019. | |
Liu Y, Ye Z Q, Liu Y T, et al. 2024b, The BDBBX21 gene of hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis), positively regulates the adversity stresses resistance of transgenic plants through the jasmonic acid signaling pathway. Industrial Crops & Products, 222(P3) : 119849. | |
Liu Y, Zhu C L, Yue X H, et al. Evolutionary relationship of moso bamboo forms and a multihormone regulatory cascade involving culm shape variation. Plant Biotechnology Journal, 2024c, 22 (9): 2578- 2592.
doi: 10.1111/pbi.14370 |
|
Liu Z J, Shi X X, Wang Z B, et al. Acetylation of transcription factor BpTCP20 by acetyltransferase BpPDCE23 modulates salt tolerance in birch. Plant Physiology, 2024d, 195 (3): 2354- 2371.
doi: 10.1093/plphys/kiae168 |
|
Lu J K, Jiang Y B, Jin B, et al. Hyperspectral imaging combined with deep transfer learning to evaluate flavonoids content in Ginkgo biloba leaves. International Journal of Molecular Sciences, 2024, 25 (17): 9584.
doi: 10.3390/ijms25179584 |
|
Luo J, Wang Y, Li Z H, et al. Haplotype-resolved genome assembly of poplar line NL895 provides a valuable tree genomic resource. Forestry Research, 2024a, 4 (1): e015. | |
Luo T G, Gao W, Belotserkovsky A, et al. VrsNet - density map prediction network for individual tree detection and counting from UAV images. International Journal of Applied Earth Observation and Geoinformation, 2024b, 131, 103923.
doi: 10.1016/j.jag.2024.103923 |
|
Lv J J, Jiang C Y, Wu W J, et al. The gapless genome assembly and multi-omics analyses unveil a pivotal regulatory mechanism of oil biosynthesis in the olive tree. Horticulture Research, 2024, 11 (8): uhae168.
doi: 10.1093/hr/uhae168 |
|
Ma C, Tong R, Zhu N F, et al. Deciphering nitrogen concentrations in Metasequoia glyptostroboides: a novel approach using RGB images and machine learning. Journal of Forestry Research, 2024a, 35, 116.
doi: 10.1007/s11676-024-01769-9 |
|
Ma H J, Pei J L, Zhuo J, et al. 2024b. The CONSTANS-LIKE gene PeCOL13 regulates flowering through intron-retained alternative splicing in Phyllostachys edulis. International Journal of Biological Macromolecules, 274(Pt 1): 133393. | |
Ma H Y, Su L W, Zhang W, et al. Epigenetic regulation of lignin biosynthesis in wood formation. New Phytologist, 2025, 245 (4): 1589- 1607.
doi: 10.1111/nph.20328 |
|
Ma M M, Zhang C, Yu L J, et al. CRISPR/Cas9 ribonucleoprotein mediated DNA-free genome editing in larch. Forestry Research, 2024c, 4, e036. | |
Ma P F, Liu Y L, Guo C, et al. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nature Genetics, 2024d, 56 (4): 710- 720.
doi: 10.1038/s41588-024-01683-0 |
|
Niu M X, Feng C H, He F, et al. The miR6445-NAC029 module regulates drought tolerance by regulating the expression of glutathione S-transferase U23 and reactive oxygen species scavenging in Populus. New Phytologist, 2024, 242 (5): 2043- 2058.
doi: 10.1111/nph.19703 |
|
Ren Y X, Wu L X, Zhong Y H, et al. Transcriptome analysis revealed the paternal importance to vegetative growth heterosis in Populus. Plants, 2024, 13 (16): 2278.
doi: 10.3390/plants13162278 |
|
Rong J D, Zheng Y S, Zhang Z Y, et al. De novo whole-genome assembly of the 10-gigabase Fokienia hodginsii genome to reveal differential epigenetic events between callus and xylem. Advanced Science, 2024, 11 (40): 2402644.
doi: 10.1002/advs.202402644 |
|
Shi T L, Jia K H, Bao Y T, et al. High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar. Plant Physiology, 2024a, 195 (1): 652- 670.
doi: 10.1093/plphys/kiae078 |
|
Shi T T, Zhang X X, Hou Y K, et al. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. Molecular Plant, 2024b, 17 (5): 725- 746.
doi: 10.1016/j.molp.2024.03.009 |
|
Song Q, Kong L F, Yang J R, et al. The transcription factor PtoMYB142 enhances drought tolerance in Populus tomentosa by regulating gibberellin catabolism. Plant Journal, 2024a, 118 (1): 42- 57.
doi: 10.1111/tpj.16588 |
|
Song Z Y, Xu C, Luan Q F, et al. Multitemporal UAV study of phenolic compounds in slash pine canopies. Remote Sensing of Environment, 2024b, 315, 114454.
doi: 10.1016/j.rse.2024.114454 |
|
Sun H, Ye Q L, Chen Q, et al. Tree canopy volume extraction fusing ALS and TLS based on improved PointNeXt. Remote Sensing, 2024b, 16 (14): 2641. | |
Sun J H, Xu J D, Qiu C, et al. The chromosome-scale genome and population genomics reveal the adaptative evolution of Populus pruinosa to desertification environment. Horticulture Research, 2024a, 11 (3): uhae034. | |
Sun S L, Han X, Jin R X, et al. Generation of CRISPR-edited birch plants without DNA integration using Agrobacterium-mediated transformation technology. Plant Science, 2024c, 342, 112029.
doi: 10.1016/j.plantsci.2024.112029 |
|
Sun T Y, Wang Y H, Wu X Q, et al. 2024d. Pinus thunbergii Parl. somatic plants’ resistance to Bursaphelenchus xylophilus depends on pathogen-induced differential transcriptomic responses. International Journal of Molecular Sciences, 25(10): 5156. | |
Wang B Y, Chen S, Zhu Z, et al. PeMYB26, an R2R3-MYB transcription factor, positively regulates lignin deposition in Moso bamboo. Plant Growth Regulation, 2024a, 104 (3): 1521- 1533. | |
Wang D, Quan M Y, Qin S T, et al. Allelic variations of WAK106-E2Fa-DPb1-UGT74E2 module regulate fibre properties in Populus tomentosa. Plant Biotechnology Journal, 2024b, 22 (4): 970- 986.
doi: 10.1111/pbi.14239 |
|
Wang J N, Xu D, Sang Y L, et al. A telomere-to-telomere gap-free reference genome of Chionanthus retusus provides insights into the molecular mechanism underlying petal shape changes. Horticulture Research, 2024c, 11 (12): uhae249. | |
Wang J X, Renninger H J, Ma Q. Labeled temperate hardwood tree stomatal image datasets from seven taxa of Populus and 17 hardwood species. Scientific Data, 2024d, 11 (1): 1.
doi: 10.1038/s41597-023-02657-3 |
|
Wang L W, Zhang R R, Zhang L H, et al. Research on individual tree canopy segmentation of Camellia oleifera based on a UAV-LiDAR system. Agriculture, 2024e, 14 (3): 364.
doi: 10.3390/agriculture14030364 |
|
Wang R, Liu C N, Segar S T, et al. 2024f. Dipterocarpoidae genomics reveal their demography and adaptations to Asian rainforests. Nature Communications, 15: 1683. | |
Wang S, Zhao C Y, Su Y, et al. 2024g. A framework for measuring tree rings based on panchromatic images and deep learning. Plant, Cell & Environment, 48(1): 189−198. | |
Wang X B, Deng Z, Hu Y S, et al. Development of the rubber tree 40K breeding chip with applications in genetic study and breeding prediction. Industrial Crops and Products, 2025, 226, 120640.
doi: 10.1016/j.indcrop.2025.120640 |
|
Wang Y J, Chen H N, Wang J Q, et al. 2024h. Research progress on the resistance mechanism of host pine to pine wilt disease. Plant Pathology, 73(3): 469−477. | |
Wang Y, Gong G N, Wang Y, et al. 2024i. Gap-free X and Y chromosome assemblies of Salix arbutifolia reveal an evolutionary change from male to female heterogamety in willows, without a change in the position of the sex-determining locus. New Phytologist, 242(6): 2872−2887. | |
Wang Y, Yang Y Z, Han Z T, et al. 2024j. Efficient purging of deleterious mutations contributes to the survival of a rare conifer. Horticulture Research, 11(6): uhae108. | |
Wang Z B, He Z H, Gao C Q, et al. 2024k. Phosphorylation of birch BpNAC90 improves the activation of gene expression to confer drought tolerance. Horticulture Research, 11(4): uhae061. | |
Wei H B, Sun F, Mo J H, et al. Overexpression of CRYPTOCHROME 2 enhances shoot growth and wood formation in poplar under growth-restrictive short days. Journal of Genetics and Genomics, 2024, 51 (11): 1310- 1313.
doi: 10.1016/j.jgg.2024.08.003 |
|
Wu J T, Deng S R, Wang Y, et al. The PtobZIP55–PtoMYB170 module regulates the wood anatomical and chemical properties of Populus tomentosa in acclimation to low nitrogen availability. Journal of Integrative Plant Biology, 2025, 67 (1): 117- 134.
doi: 10.1111/jipb.13804 |
|
Xia Y F, Han Q, Shu J H, et al. 2024a. Stomatal density suppressor PagSDD1 is a “generalist” gene that promotes plant growth and improves water use efficiency. International Journal of Biological Macromolecules, 262(Pt 1): 129721. | |
Xia Y F, Jiang S X, Wu W Q, et al. MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar. New Phytologist, 2024b, 241 (6): 2506- 2522.
doi: 10.1111/nph.19531 |
|
Xiang X D, Zhou X L, Zi H L, et al. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. Horticulture Research, 2024, 11 (1): uhad255.
doi: 10.1093/hr/uhad255 |
|
Xie H Y, Ye X, Liu C, et al. The microRNA7833-AUX6 module plays a critical role in wood development by modulating cellular auxin influx in Populus tomentosa. Tree Physiology, 2024a, 44 (3): tpad153.
doi: 10.1093/treephys/tpad153 |
|
Xie Y N, Liu B, Zhou Z C, et al. 2024b. PmHs1pro-1 monitors Bsursaphelenchus xylophilus infection and activates defensive response in resistant Pinus massoniana. Plant, Cell & Environment, 47(11): 4369−4382. | |
Xing B Y, Li S, Qi J Y, et al. Integrated transcriptomic and metabolic analyses reveal the early response mechanism of Pinus tabulaeformis to pine wood nematodes. BMC Genomics, 2024a, 25 (1): 865.
doi: 10.1186/s12864-024-10707-2 |
|
Xing D, Sun P H, Wang Y L, et al. Non-destructive estimation of needle leaf chlorophyll and water contents in Chinese fir seedlings based on hyperspectral reflectance spectra. Forestry Research, 2024b, 4, e024. | |
Xing J X, Luo A J, Wang X H, et al. Identification of U6 promoter and establishment of gene-editing system in Larix kaempferi (Lamb. ) Carr. Plants (Basel), 2024c, 14 (1): 45. | |
Xu T T, Wang J, Li C H, et al. EuMYB308 regulates lignin accumulation by targeting EuLAC17 in Eucalyptus urophylla. Industrial Crops & Products, 2024a, 218, 118988. | |
Xu W J, Cheng H, Cheng J Y, et al. A COBRA family protein, PtrCOB3, contributes to gelatinous layer formation of tension wood fibers in poplar. Plant Physiology, 2024b, 196 (1): 323- 337.
doi: 10.1093/plphys/kiae328 |
|
Xu W Q, Ren C Q, Zhang X Y, et al. Genome sequences and population genomics reveal climatic adaptation and genomic divergence between two closely related sweetgum species. Plant Journal, 2024c, 118 (5): 1372- 1387.
doi: 10.1111/tpj.16675 |
|
Xue Z Q, Applequist W L, Hörandl E, et al. Sex chromosome turnover plays an important role in the maintenance of barriers to post-speciation introgression in willows. Evolution Letters, 2024, 8 (4): 467- 477.
doi: 10.1093/evlett/qrae013 |
|
Yan X, Shi G H, Sun M, et al. 2024. Genome evolution of the ancient hexaploid Platanus x acerifolia (London planetree). Proceedings of the National Academy of Sciences of the United States of America, 121(24): e1975288175. | |
Yang K B, Li Z Y, Zhu C L, et al. A hierarchical ubiquitination-mediated regulatory module controls bamboo lignin biosynthesis. Plant Physiology, 2024a, 196 (4): 2565- 2582.
doi: 10.1093/plphys/kiae480 |
|
Yang Q S, Li J J, Wang Y, et al. Genomic basis of the distinct biosynthesis of β-glucogallin, a biochemical marker for hydrolyzable tannin production, in three oak species. New Phytologist, 2024b, 242 (6): 2702- 2718.
doi: 10.1111/nph.19711 |
|
Yang S, Zong W T, Shi L L, et al. PPGR: a comprehensive perennial plant genomes and regulation database. Nucleic Acids Research, 2024c, 52 (D1): D1588- D1596.
doi: 10.1093/nar/gkad963 |
|
Yang X F, Lin Q F, Udayabhanu J, et al. An optimized CRISPRCas9-based gene editing system for efficiently generating homozygous edited plants in rubber tree (Hevea brasiliensis). Industrial Crops and Products, 2024d, 222, 119740.
doi: 10.1016/j.indcrop.2024.119740 |
|
Yao X M, Zhang G F, Zhang G, et al. PagARGOS promotes low-lignin wood formation in poplar. Plant Biotechnology Journal, 2024, 22 (8): 2201- 2215.
doi: 10.1111/pbi.14339 |
|
Ye H, Liu H Z, Li H C, et al. Complete mitochondrial genome assembly of Juglans regia unveiled its molecular characteristics, genome evolution, and phylogenetic implications. BMC Genomics, 2024, 25 (1): 894.
doi: 10.1186/s12864-024-10818-w |
|
Yu X Q, Niu H Q, Zhang Y M, et al. Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus. Plant Physiology, 2024, 197 (1): kiae593.
doi: 10.1093/plphys/kiae593 |
|
Yuan W D, Zhou H P, Zhang C, et al. Prediction of oil content in Camellia oleifera seeds based on deep learning and hyperspectral imaging. Industrial Crops & Products, 2024, 222 (P2): 119662. | |
Yun T, Li J, Ma L F, et al. Status, advancements and prospects of deep learning methods applied in forest studies. International Journal of Applied Earth Observation and Geoinformation, 2024, 131, 103938.
doi: 10.1016/j.jag.2024.103938 |
|
Zhang G B, Liu F L, Ling Y. 2024a. Research and application of dynamic tree growth cycle prediction technology based on transmission channel laser point cloud. Procedia Computer Science 247: 812–818. | |
Zhang H, Yang C, Fan X J. MTCDNet: multimodal feature fusion-based tree crown detection network using UAV-acquired optical imagery and LiDAR data. Remote Sensing, 2025, 17 (12): 1996.
doi: 10.3390/rs17121996 |
|
Zhang J W, Ye L F, Chen Q L, et al. Response analysis of Pinus sibirica to pine wood nematode infection through transcriptomics and metabolomics study. Frontiers in Plant Science, 2024b, 15, 1383018.
doi: 10.3389/fpls.2024.1383018 |
|
Zhang K M, Lan Y G, Zhang S R, et al. A PLATZ transcription factor PhePLATZ8 from Moso bamboo (Phyllostachys edulis) plays a positive role in regulating growth and abiotic stress tolerance. Industrial Crops and Products, 2024c, 221, 119334.
doi: 10.1016/j.indcrop.2024.119334 |
|
Zhang L, Shi Y, Gong W F, et al. 2024d. The tetraploid Camellia oleifera genome provides insights into evolution, agronomic traits, and genetic architecture of oil Camellia plants. Cell Reports, 43(11): 114902. [LinkOut] | |
Zhang X Q, Yang X F, Zhang Q Q, et al. 2024f. Genome-wide identification and comparative analysis of YABBY transcription factors in oil tea and tea tree. 3 Biotech, 14(4): 113. | |
Zhang X Y, Chen K, Lv G B, et al. The association analysis of DNA methylation and transcriptomics identified BpCYCD3;2 as a participant in influencing cell division in autotetraploid birch (Betula pendula) leaves. Plant Science, 2024e, 344, 112099.
doi: 10.1016/j.plantsci.2024.112099 |
|
Zhang Y H, Chen S, Xu L H, et al. 2024i. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar. Plant Cell, 36(5): 1806−1828. | |
Zhang Y M, Ru G X, Zhao Z L, et al. 2024h. Hyperspectral prediction models of chlorophyll content in Paulownia leaves under drought stress. Sensors, 24(19): 6309. | |
Zhang Y, Wang Z Y, Cui X T, et al. 2024g. Amphidiploid production of a distant hybrid Populus simonii × P. euphratica cv. ‘Xiaohuyang-1’ and resulting in phenotypic variation. New Forests, 55(4): 785−800. | |
Zhao M Q, Lei Y J, Wu L, et al. The miR159a-PeMYB33 module regulates poplar adventitious rooting through the abscisic acid signal pathway. The Plant Journal, 2024a, 118 (3): 879- 891.
doi: 10.1111/tpj.16643 |
|
Zhao P, Yu Q L, He Y M, et al. PagHAM4a–PagSCL21 and PagHAM4b–PagTCP20 modules positively regulate cambial activity and its differentiation into secondary xylem in poplar. Journal of Experimental Botany, 2024b, 75 (22): 7174- 7189.
doi: 10.1093/jxb/erae375 |
|
Zhong Y, He J J, Luo F, et al. The cellular and molecular processes of lenticel development during tree stem growth. Plant Journal, 2024, 120 (2): 699- 711.
doi: 10.1111/tpj.17015 |
|
Zhou A T, Tang J R, Du Q J, et al. Comparative physiological and transcriptomic analyses provide induction resistance mechanisms of Bacillus tequilensis against Colletotrichum fructicola in Camellia oleifera. Plant Physiology and Biochemistry, 2024, 214, 108912.
doi: 10.1016/j.plaphy.2024.108912 |
|
Zhu H G, Wang F Q, Xu Z P, et al. The complex hexaploid oil-Camellia genome traces back its phylogenomic history and multi-omics analysis of Camellia oil biosynthesis. Plant Biotechnology Journal, 2024a, 22 (10): 2890- 2906.
doi: 10.1111/pbi.14412 |
|
Zhu J H, Lim K J, Fang T Y, et al. Unraveling Pinus massoniana’s defense mechanisms against Bursaphelenchus xylophilus under aseptic conditions: a transcriptomic analysis. Phytopathology, 2024b, 114 (12): 2525- 2535.
doi: 10.1094/PHYTO-06-24-0180-R |
|
Zhu J Y, Liu Q H, Diao S, et al. Development of a 101.6K liquid-phased probe for GWAS and genomic selection in pine wilt disease-resistance breeding in Masson pine. Plant Genome, 2025, 18 (1): e70005.
doi: 10.1002/tpg2.70005 |
|
Zou J P, Li Y H, Wang K J, et al. Prime editing enables precise genome modification of a Populus hybrid. aBIOTECH, 2024, 5 (4): 497- 501.
doi: 10.1007/s42994-024-00177-1 |
[1] | Ruiyan Wei,Weihua Zhang,Fang Xu,Yuanzhen Lin. Genomic Selection for Growth Traits and Early Selection of Superior Progeny in Castanopsis hystrix [J]. Scientia Silvae Sinicae, 2024, 60(12): 83-91. |
[2] | Liming Bian,Huichun Zhang. Application of Phenotyping Techniques in Forest Tree Breeding and Precision Forestry [J]. Scientia Silvae Sinicae, 2020, 56(6): 113-126. |
[3] | Sheng Zhu,Minren Huang. Recent Advances and Prospect of the Genomic Selection in Forest Genetics and Tree Breeding [J]. Scientia Silvae Sinicae, 2020, 56(11): 176-186. |
[4] | Wan Zhibing;Dai Xiaogang;Yin Tongming. Review on the Hot Topics of the Basic Studies for Forest Genetics and Breeding [J]. Scientia Silvae Sinicae, 2012, 48(2): 150-154. |
[5] | Jiang Zehui. Progress in Bamboo Genomics Research [J]. Scientia Silvae Sinicae, 2012, 48(1): 159-166. |
[6] | Xu Meng;Pan Huixin;Zhang Bo;Wang Shudong;Huang Minren. Molecular Biology Applied in the Improvement Process of Forest Trees [J]. Scientia Silvae Sinicae, 2009, 12(1): 136-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||