Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (7): 47-55.doi: 10.11707/j.1001-7488.LYKX20230289
Previous Articles Next Articles
Linxin Li,Guiyun Yang,Haolan Guo,Qiang Dong,Ming Li,Xiangqing Ma,Pengfei Wu*()
Received:
2023-07-03
Online:
2024-07-25
Published:
2024-08-19
Contact:
Pengfei Wu
E-mail:fjwupengfei@126.com
CLC Number:
Linxin Li,Guiyun Yang,Haolan Guo,Qiang Dong,Ming Li,Xiangqing Ma,Pengfei Wu. Effects of Propagation Methods on Biomass, Morphological Traits and Carbon and Nitrogen Contents of Fine Roots at Different Orders of Chinese Fir Seedlings[J]. Scientia Silvae Sinicae, 2024, 60(7): 47-55.
Fig.1
Comparison of root system and aboveground biomass, and root-shoot ratio of Chinese fir seedlings among different propagation methods The same lowercase letters indicated that there was no significant differences in root between the indexes of Chinese fir saplings in different propagation methods (P>0.05)."
Fig.2
Comparison of root biomass in different order of Chinese fir seedlings among different propagation methods The same lowercase letters indicated that there was no significant difference in the biomass of the same order of the roots of Chinese fir saplings in different propagation methods (P>0.05)."
Fig.3
Comparison of morphological traits of different order roots of Chinese fir seedlings among different propagation methods The same lowercase letters indicated that the difference of morphological traits in the same order of Chinese fir seedlings root with different propagation methods was not significant (P>0.05)."
Fig.4
Comparison of C and N contents and C/N in roots of Chinese fir seedlings among different propagation methods The same lowercase letters indicated that there was no significant difference in C and N content and C/N of roots in the same order of Chinese fir seedlings with different propagation methods (P>0.05)."
常云妮, 李宝银, 钟全林, 等. 三种功能型林木幼苗生物量分配及其与细根和叶片养分关系. 生态学杂志, 2022, 41 (11): 2090- 2097. | |
Chang Y N, Li B Y, Zhong Q L, et al. Biomass allocation of three functional types of forest tree seedlings and their relationships with nutrients in fine roots and leaves. Chinese Journal of Ecology, 2022, 41 (11): 2090- 2097. | |
杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响. 植物生态学报, 2023, 47 (3): 348- 360.
doi: 10.17521/cjpe.2022.0201 |
|
Du Y D, Yuan X Y, Feng Z Z. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar. Chinese Journal of Plant Ecology, 2023, 47 (3): 348- 360.
doi: 10.17521/cjpe.2022.0201 |
|
国家林业和草原局. 2019. 中国森林资源报告(2014—2018) . 北京: 中国林业出版社, 28-29. | |
State Forestry and Grassland Administration. 2019. China forest resources report (2014—2018). Beijing: China Forestry Publishing House, 28-29. [in Chinese] | |
李 婧, 洪宗文, 熊仕臣, 等. 华西雨屏区不同林龄柳杉人工林的根系形态和碳氮磷化学计量特征. 四川农业大学学报, 2023, 41 (2): 257- 265. | |
Li J, Hong Z W, Xiong S C, et al. The root morphology and C: N: P stoichiometric characteristics of Cryptomeria japonica var. sinensis plantations at different ages in Rainy area of western China. Journal of Sichuan Agricultural University, 2023, 41 (2): 257- 265. | |
李石一宁, 熊德成, 姚晓东, 等. 常绿阔叶林中壳斗科树种细根形态与养分含量的序级变化特征. 生态学杂志, 2022, 41 (5): 833- 840. | |
Li-Shi Y N, Xiong D C, Yao X D, et al. Morphology and nutrient contents of fine roots from different orders in Fagaceae species in an evergreen broad-leaved forest. Chinese Journal of Ecology, 2022, 41 (5): 833- 840. | |
刘运科, 苏 宇, 李德会, 等. 川中丘陵区3个树种的细根形态和功能异质性分析. 西北植物学报, 2016, 36 (5): 1012- 1020.
doi: 10.7606/j.issn.1000-4025.2016.05.1012 |
|
Liu Y K, Su Y, Li D H, et al. Morphological and functional heterogeneity of fine roots among three tree species in the hilly region of central Sichuan. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36 (5): 1012- 1020.
doi: 10.7606/j.issn.1000-4025.2016.05.1012 |
|
马雄忠, 王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征. 生态学报, 2020, 40 (17): 6001- 6008. | |
Ma X Z, Wang X P. Root architecture and adaptive strategy of two desert plants in the Alxa Plateau. Acta Ecologica Sinica, 2020, 40 (17): 6001- 6008. | |
苏 宇, 吴世磊, 贺 维, 等. 弓杠岭不同海拔云杉细根生物量及形态特征. 西北植物学报, 2022, 42 (1): 138- 144.
doi: 10.7606/j.issn.1000-4025.2022.01.0138 |
|
Su Y, Wu S L, He W, et al. Fine root biomass and its morphological characteristics of Picea asperata along an elevation gradient of Gonggang mountains. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42 (1): 138- 144.
doi: 10.7606/j.issn.1000-4025.2022.01.0138 |
|
王 娇, 关 欣, 张伟东, 等. 杉木幼苗生物量分配格局对氮添加的响应. 植物生态学报, 2021, 45 (11): 1231- 1240. | |
Wang J, Guan X, Zhang W D, et al. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings. Chinese Journal of Plant Ecology., 2021, 45 (11): 1231- 1240. | |
吴帆, 熊德成, 周嘉聪, 等. 2022. 增温及隔离降水对杉木幼树细根生物量、形态及养分特征的影响. 热带亚热带植物学报, 30(4): 509-517. | |
Wu F, Xiong D C, Zhou J C, et al. 2022. Effects of Warming and precipitation exclusion on fine root biomass, morphology and nutrient characteristics of Cunninghamia lanceolata saplings. Journal of Tropical and Subtropical Botany. 30(4): 509-517. [in Chinese] | |
熊德成, 黄锦学, 杨智杰, 等. 亚热带六种天然林树种细根养分异质性. 生态学报, 2012, 32 (14): 4343- 4351.
doi: 10.5846/stxb201106280966 |
|
Xiong D C, Huang J X, Yang Z J, et al. Nutrient heterogeneity in fine roots of six subtropical natural tree species. Acta Ecologica Sinica, 2012, 32 (14): 4343- 4351.
doi: 10.5846/stxb201106280966 |
|
闫小莉, 胡文佳, 马远帆, 等. 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略. 林业科学, 2020, 56 (2): 1- 11. | |
Yan X L, Hu W J, Ma Y F, et al. Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies. Scientia Silvae Sinicae, 2020, 56 (2): 1- 11. | |
杨 鑫, 张高洁, 姚继周, 等. 水杉人工林细根解剖结构和菌根侵染研究. 南京林业大学学报(自然科学版), 2016, 40 (6): 97- 102. | |
Yang X, Zhang G J, Yao J Z, et al. Study on fine root anatomical structure and mycorrhizal colonization in Metasequoia glyptostroboides plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40 (6): 97- 102. | |
杨 雨, 李芳兰, 包维楷, 等. 川西亚高山11种常见灌木细根形态特征. 应用与环境生物学报, 2020, 26 (6): 1376- 1384. | |
Yang Y, Li F L, Bao W K, et al. Fine-root morphology of common shrubs in the subalpine forests of western Sichuan. Chinese Journal of Applied and Environmental Biology, 2020, 26 (6): 1376- 1384. | |
杨振亚, 周本智, 陈庆标, 等. 2018. 干旱对杉木幼苗根系构型及非结构性碳水化合物的影响. 生态学报, 38(18): 6729-6740. | |
Yang Z Y, Zhou B Z, Chen Q B, et al. 2018. Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata. Acta Ecologica Sinica, 38(18): 6729-6740. [in Chinese] | |
张豪睿, 付 刚. 藏北高寒草甸根系生物量与碳氮分布格局及关联特征. 生态学报, 2021, 41 (9): 3625- 3633. | |
Zhang H R, Fu G. Root biomass, carbon and nitrogen distribution pattern and correlation characteristics of alpine meadow in northern Tibet. Acta Ecologica Sinica, 2021, 41 (9): 3625- 3633. | |
张吉玲, 李明阳, 李 勇, 等. 机械损伤处理杉木无性系萌蘖及内源激素含量差异. 南京林业大学学报(自然科学版), 2021, 45 (2): 153- 158. | |
Zhang J L, Li M Y, Li Y, et al. Effects of mechanical damage treatment on the tillering ability and endogenous hormone content of Chinese fir clones. Jounal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (2): 153- 158. | |
张进如, 闫晓俊, 贾林巧, 等. 亚热带天然常绿阔叶林林下9种灌木细根形态和C、N化学计量特征. 生态学报, 2022, 42 (9): 3716- 3726. | |
Zhang J R, Yan X J, Jia L Q, et al. Morphology and C and N stoichiometry traits of fine roots of nine understory shrubs in subtropical natural evergreen broad-leaved forest. Acta Ecologica Sinica, 2022, 42 (9): 3716- 3726. | |
周永姣, 王满堂, 王钊颖, 等. 亚热带59个常绿与落叶树种不同根序细根养分及化学计量特征. 生态学报, 2020, 40 (14): 4975- 4984. | |
Zhou Y J, Wang M T, Wang Z Y, et al. Nutrient and ecological stoichiometry of different root order fine roots of 59 evergreen and deciduous tree species in subtropical zone. Acta Ecologica Sinica, 2020, 40 (14): 4975- 4984. | |
祝 维, 余立璇, 赵德海, 等. 基于根系发育分级的砂壤土下成熟林木根系构型分析. 植物生态学报, 2019, 43 (2): 119- 130.
doi: 10.17521/cjpe.2018.0269 |
|
Zhu W, Yu L X, Zhao D H, et al. Architectural analysis of root systems of mature trees in sandy loam soils using the root development classification. Chinese Journal of Plant Ecology, 2019, 43 (2): 119- 130.
doi: 10.17521/cjpe.2018.0269 |
|
邹显花, 吴鹏飞, 贾亚运, 等. 杉木根系对不同磷斑块浓度与异质分布的阶段性响应. 植物营养与肥料学报, 2016, 22 (4): 1056- 1063.
doi: 10.11674/zwyf.15076 |
|
Zou X H, Wu P F, Jia Y Y, et al. Periodical response of Chinese fir root to the phosphorus concentrations in patches and heterogeneous distribution in different growing stages. Journal of Plant Nutrition and Fertilizer, 2016, 22 (4): 1056- 1063.
doi: 10.11674/zwyf.15076 |
|
Addo-Danso S D, Defrenne C E, McCormack M L, et al. Fine-root morphological trait variation in tropical forest ecosystems: an evidence synthesis. Plant Ecology, 2020, 221 (1): 1- 13.
doi: 10.1007/s11258-019-00986-1 |
|
Albrecht U, Bordas M, Lamb B, et al. Influence of propagation method on root architecture and other traits of young citrus rootstock plants. HortScience, 2017, 52 (11): 1569- 1576.
doi: 10.21273/HORTSCI12320-17 |
|
Asaah E K, Wanduku T N, Tchoundjeu Z, et al. 2012. Do propagation methods affect the fine root architecture of African plum (Dacryodes edulis)? Trees, 26(5): 1461−1469. | |
Brunner I, Herzog C, Dawes M A, et al. How tree roots respond to drought. Frontiers in Plant Science, 2015, 6, 547. | |
Cao Y, Li N N, Lin J Q, et al. Root system-rhizosphere soil-bulk soil interactions in different Chinese fir clones based on fungi community diversity change. Frontiers in Ecology and Evolution, 2022, 10, 1028686.
doi: 10.3389/fevo.2022.1028686 |
|
Chen H Y H, Brassard B W. Intrinsic and extrinsic controls of fine root life span. Critical Reviews in Plant Sciences, 2013, 32 (3): 151- 161.
doi: 10.1080/07352689.2012.734742 |
|
Chen W L, Koide R T, Adams T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (31): 8741- 8746. | |
Donovan L A, Maherali H, Caruso C M, et al. The evolution of the worldwide leaf economics spectrum. Trends in Ecology and Evolution, 2011, 26 (2): 88- 95.
doi: 10.1016/j.tree.2010.11.011 |
|
Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants. Science, 2002, 296 (5573): 1689- 1691.
doi: 10.1126/science.1071617 |
|
Greinwald K, Dieckmann L A, Schipplick C, et al. 2021. Vertical root distribution and biomass allocation along proglacial chronosequences in Central Switzerland. Arctic, Antarctic, and Alpine Research, 53(1): 20−34. | |
Guo D L, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a long leaf pine forest. Oecologia, 2004, 140, 450- 457.
doi: 10.1007/s00442-004-1596-1 |
|
Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate species. New Phytologist, 2008, 180 (3): 673- 683.
doi: 10.1111/j.1469-8137.2008.02573.x |
|
Li L X, Deng X H, Zhang T, et al. Propagation methods decide root architecture of Chinese fir: evidence from tissue culturing, rooted cutting and seed germination. Plants, 2022, 11 (19): 2472.
doi: 10.3390/plants11192472 |
|
Li W B, Zhang H X, Huang G Z, et al. Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 2020, 29 (3): 573- 598.
doi: 10.1111/geb.13042 |
|
Liao Y C, McCormack M L, Fan H B, et al. Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China. Plant and soil, 2014, 381 (1): 225- 234. | |
Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013, 112 (2): 347- 357.
doi: 10.1093/aob/mcs293 |
|
Ma H Z, Mo L D, Crowther T W, et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nature Ecology and Evolution, 2021, 5 (8): 1110- 1122.
doi: 10.1038/s41559-021-01485-1 |
|
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555 (7694): 94- 97.
doi: 10.1038/nature25783 |
|
McCormack M L, Dickie L A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207 (3): 505- 518.
doi: 10.1111/nph.13363 |
|
Ostonen L, Lõhmus K, Helmisaari H, et al. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiology, 2007, 27 (11): 1627- 1634.
doi: 10.1093/treephys/27.11.1627 |
|
Pokhrel S, Meyering B, Bowman K, et al. Horticultural attributes and root architectures of field-grown ‘Valencia’ trees grafted on different rootstocks propagated by seed, cuttings, and tissue culture. HortScience, 2021, 56 (2): 163- 172.
doi: 10.21273/HORTSCI15507-20 |
|
Poot P, Lambers H. Shallow-soil endemics: adaptive advantages and constraints of a specialized root-system morphology. New Phytologist, 2008, 178 (2): 371- 381.
doi: 10.1111/j.1469-8137.2007.02370.x |
|
Portsmuth A, Niinemets Ü. Structural and physiological plasticity in response to light and nutrients in five temperate deciduous woody species of contrasting shade tolerance. Functional Ecology, 2007, 21 (1): 61- 77.
doi: 10.1111/j.1365-2435.2006.01208.x |
|
Pregitzer K S, DeForest J L, Burton A J, et al. Fine root architecture of nine North American trees. Ecological Monographs, 2002, 72 (2): 293- 309.
doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2 |
|
Reich P B. The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102 (2): 275- 301.
doi: 10.1111/1365-2745.12211 |
|
Wei X, Band L R, Kumpf R P, et al. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science, 2016, 351 (6217): 384- 387. | |
Wen Z H, White P J, Shen J B, et al. Linking root exudation to belowground economic traits for resource acquisition. New Phytologist, 2022, 233 (4): 1620- 1635.
doi: 10.1111/nph.17854 |
|
Wu P F, Ma X Q, Tigabu M, et al. Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research, 2011, 41 (2): 228- 234.
doi: 10.1139/X10-198 |
|
Zou X H, Wu P F, Chen N L, et al. Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 2015, 45 (4): 402- 410.
doi: 10.1139/cjfr-2014-0384 |
[1] | Yingchao Ruan, Rexitahong Subi,Xi Lin,Ming Li,Shaohui Fan,Suiqi Feng,Zhiyun Chen,Xiangqing Ma,Zongming He. Effects of Pruning Intensity on the Formation and Quality of Clear Wood of Trees in Cunninghamia lanceolata Plantations [J]. Scientia Silvae Sinicae, 2024, 60(6): 50-59. |
[2] | Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85. |
[3] | Hui Jia,Min Zhu,Zaipeng Yu,Xiaohua Wan,Yanrong Fu,Sirong Wang,Bingzhang Zou,Zhiqun Huang. Relationship between Litter Production, Litter Turnover Period and Leaf Traits of Different Tree Species in Subtropical Young Afforested Land [J]. Scientia Silvae Sinicae, 2024, 60(1): 12-18. |
[4] | Ye Wang,Guangde Li,Guobin Liu,Ting Liao,Liqin Guo,Yanwu Yao,Jun Cao. Plasticity Responses of Phenological Characteristics and Tree Growth of Populus tomentosa Plantation to Fertilization [J]. Scientia Silvae Sinicae, 2023, 59(5): 32-40. |
[5] | Wenfei Zhao,Xiaoyu Cao,Zhengchang Xie,Yifan Pang,Yaping Sun,Jiping Li,Yongjun Mo,Da Yuan. Evaluation of Stand Spatial Structure of Cunninghamia lanceolata Public Welfare Forest by Using Structural Equation Model [J]. Scientia Silvae Sinicae, 2022, 58(8): 76-88. |
[6] | Zhouyang Li,Wenling Lu,Wang Qian,Yizi Huang,Erpei Lin,Huahong Huang,Zaikang Tong. Biological Characteristics and Response to Aluminum Stress of Root Border Cells in Cunninghamia lanceolata and Their Response to Aluminum Stress [J]. Scientia Silvae Sinicae, 2022, 58(7): 73-81. |
[7] | Jundong Rong,Lili Fan,Liguang Chen,Yinghui Zhang,Tianyou He,Lingyan Chen,Kunpeng Song,Yushan Zheng. Impacts on Biomass Allocation and Root Growth of Fokienia hodginsii Seedlings of Different Patterns and Quantities of Nitrogen Application [J]. Scientia Silvae Sinicae, 2020, 56(7): 175-184. |
[8] | Xiaoli Yan, Wenjia Hu, Yuanfan Ma, yufan Huo, Tuo Wang, Xiangqing Ma. Nitrogen Uptake Preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under Heterogeneous Nitrogen Supply Environment and their Root Foraging Strategies [J]. Scientia Silvae Sinicae, 2020, 56(2): 1-11. |
[9] | Xia Li,Libao Wang,Yafeng Wen,Jun Lin,Xingtong Wu,Meiling Yuan,Yuan Zhang,Minqiu Wang,Xinyu Li. Genetic Diversity of Chinese Fir (Cunninghamia lanceolata) Breeding Populations among Different Generations [J]. Scientia Silvae Sinicae, 2020, 56(11): 53-61. |
[10] | Hu Huaying, Zhang Hong, Cao Sheng, Yin Danyang, Zhou Chuifan, He Zongming. Effects of Biochar Application on Soil Bacterial Community Structure and Diversity in Cunninghamia lanceolata Plantations [J]. Scientia Silvae Sinicae, 2019, 55(8): 184-193. |
[11] | Wu Zhilong, Zhou Chengjun, Zhou Xinnian, Liu Fuwan, Zhu Qixiong, Huang Jinyong, Chen Wen. Difference in Soil Respiration Rates of the Mixed Plantations of Cunninghamia lanceolata and Broadleaved Trees 5 Years after Harvesting at Different Intensities [J]. Scientia Silvae Sinicae, 2019, 55(6): 142-149. |
[12] | Yin Shuyan, Li Bo, Zhou Chenggang, Zhang Weiguang, Xie Lixia, Liu Yongjie. Analysis on Species Differentiation of Oligonychus ununguis on Castanea mollissima and Cunninghamia lanceolata based on 28S rDNA Gene Sequences [J]. Scientia Silvae Sinicae, 2019, 55(4): 122-128. |
[13] | Yingkai Zhang,Pengju Liu,Changchun Liu,Yi Ren. Prediction Method of Cunninghamia lanceolata Growth Based on Spatial Clustering [J]. Scientia Silvae Sinicae, 2019, 55(11): 137-144. |
[14] | Hanbin Wu,Aiguo Duan,Jianguo Zhang. Growth Variation and Selection Effect of Cunninghamia lanceolata Provenances at Different Stand Ages [J]. Scientia Silvae Sinicae, 2019, 55(10): 181-192. |
[15] | Wei Mingke, Yu Jinjian, Huang Xiaolong, Liu Qiongyao, Huang Huahong, Lin Erpei, Tong Zaikang. Cloning, Expression and Single Nucleotide Polymorphisms Analysis of NAC Transcription Factor Gene ClNAC1 in Cunninghamia lanceolata [J]. Scientia Silvae Sinicae, 2018, 54(9): 49-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||