Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (5): 139-150.doi: 10.11707/j.1001-7488.LYKX20220629
• Research papers • Previous Articles Next Articles
Lin Zhu1,Lishui Nie1,Ce Shi1,Mengyao Huang1,Xin Niu1,Runzhe Zhang1,Zhaode Zhang1,Yifan Wei1,Dengzhi Wang1,Hao Yang2,Haoliang Nie3,Jiang Wang4,HuiJuan Bo5
Received:
2022-09-13
Online:
2024-05-25
Published:
2024-06-14
CLC Number:
Lin Zhu,Lishui Nie,Ce Shi,Mengyao Huang,Xin Niu,Runzhe Zhang,Zhaode Zhang,Yifan Wei,Dengzhi Wang,Hao Yang,Haoliang Nie,Jiang Wang,HuiJuan Bo. Effects of Soil Properties and Stand Factors on nirK-Denitrifying Microbial Community in Songshan, Beijing[J]. Scientia Silvae Sinicae, 2024, 60(5): 139-150.
Table 1
Sites description"
林分类型 Forest stands | 海拔 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect | 凋落物厚度 Litter depth/cm | 林分密度 Stand density/ (plant·hm?2) | 平均树高 Average height/m | 平均胸径 Average DBH/cm | 郁闭度 Canopy density |
油松林Pinus tabuliformis forest | 941 | 18 | 东East | 7.0 | 894 | 18 | 32 | 0.80 |
山杨林Populus davidiana forest | 869 | 21 | 北North | 1.0 | 992 | 9 | 14 | 0.80 |
蒙古栎林Quercus mongolica forest | 856 | 23 | 东北Northeast | 3.5 | 985 | 7 | 12 | 0.80 |
Table 2
Soil properties in different forest stands"
林型 Forest stands | pH | 有机质 SOM/(g?kg?1) | 总氮 TN/(g?kg?1) | 碱解氮 AN/(mg?kg?1) | 有效磷 AP/(mg?kg?1) | 速效钾AK/ (mg?kg?1) | 铵态氮NH4+/ (mg?kg?1) | 硝态氮NO3?/ (mg?kg?1) |
油松林Pinus tabuliformis forest | 6.3 ± 0.3a | 70.3 ± 2.8a | 1.6 ± 0.1a | 247.0 ± 10.1a | 2.8 ± 0.1c | 378.0 ± 15.4a | 24.4 ± 2.9a | 28.7 ± 0.2a |
山杨林Populus davidiana forest | 5.7 ± 0.2a | 12.3 ± 0.4c | 0.4 ± 0.01c | 158.1 ± 4.5b | 8.0 ± 0.2a | 110.0 ± 3.1c | 18.7 ± 0.5b | 8.7 ± 0.3b |
蒙古栎林Quercus mongolica forest | 5.9 ± 0.2a | 33.2 ± 1.4b | 0.9 ± 0.03b | 68.0 ± 2.8c | 3.8 ± 0.2b | 174.0 ± 7.1b | 21.4 ± 1.1b | 10.7 ± 2.2b |
Table 3
Alpha diversity index of soil nirK-type denitrifying microorganisms in different forest stands"
林型 Forest stands | Shannon指数Shannon index | Simpson指数Simpson index | Chao1指数Chao1 index |
油松林 Pinus tabuliformis forest | 7.59 ± 0.56a | 0.98 ± 0.01a | 2164.24 ± 214.08a |
山杨林 Populus davidiana forest | 5.23 ± 0.26b | 0.89 ± 0.02b | 1650.56 ± 136.69b |
蒙古栎林 Quercus mongolica forest | 5.76 ± 0.38b | 0.93 ± 0.02b | 1621.36 ± 156.70b |
Table 4
Correlation coefficients between soil properties and α、β diversity of of soil nirK-type denitrifying microorganisms"
土壤性质 Soil properties | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | β多样性 β diversity |
pH | 0.68* | ?0.33 | 0.47 | 0.48 |
有机质 SOM | 0.78* | ?0.85** | 0.70* | 0.58 |
碱解氮 AN | 0.40 | ?0.85** | 0.72* | 0.46 |
全氮 TN | 0.78* | ?0.42 | 0.70* | 0.58 |
有效磷 AP | ?0.85** | 0.86** | ?0.70* | ?0.52 |
速效钾 AK | 0.75* | ?0.86** | 0.67* | 0.52 |
铵态氮 NH4+-N | 0.90** | ?0.71* | 0.67* | 0.30 |
硝态氮 NO3?-N | 0.77* | ?0.77* | 0.70* | 0.44 |
Table 6
Correlation coefficients between stand factors and α, β diversity of of soil nirK-type denitrifying microorganisms"
林分因子 Stand factors | Shannon指数 Shannon index | Simpson指数 Simpson index | Chao1指数 Chao1 index | β多样性 β diversity |
平均树高 Average height | 0.86** | 0.70* | 0.82** | 0.46 |
平均胸径 Average DBH | 0.88** | 0.74* | 0.82** | 0.49 |
林分密度 Stand density | ?0.91** | ?0.81** | ?0.82** | ?0.53 |
凋落物厚度 Litter depth | 0.90** | 0.88** | 0.73* | 0.57 |
海拔 Altitude | 0.87** | 0.72* | 0.82** | 0.47 |
坡度 Slope | ?0.75* | ?0.56 | 0.77* | 0.37 |
白 静, 田有亮, 韩照日格图, 等. 油松人工林地上生物量、叶面积指数与林分密度关系的研究. 干旱区资源与环境, 2008, 22 (3): 183- 187. | |
Bai J, Tian Y L, Han Z R G T, et al. The research on the relationship between the ground biomass, the leaf area index and the stand density in Pinus tabulaeformis artificial forest. Journal of Arid Land Resources and Environment, 2008, 22 (3): 183- 187. | |
鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil agricultural chemistry analysis. Beijing: China Agriculture Press. [in Chinese] | |
曹乾斌, 王邵军, 陈闽昆, 等. 不同恢复阶段热带森林土壤nirS型反硝化微生物群落结构及多样性特征. 生态学报, 2021, 41 (2): 626- 636. | |
Cao Q B, Wang S J, Chen M K, et al. The structure and diversity of nirS-denitrifying microbial community across three restoration stages of Xishuangbanna tropical forests. Acta Ecologica Sinica, 2021, 41 (2): 626- 636. | |
陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环. 生态学杂志, 2004, 23 (5): 126- 133. | |
Chen F S, Cao D H, He X Y. Soil nitrogen transformation and cycling in forest ecosystem. Chinese Journal of Ecology, 2004, 23 (5): 126- 133. | |
陈 洁, 骆土寿, 周 璋, 等. 氮沉降对热带亚热带森林土壤氮循环微生物过程的影响研究进展. 生态学报, 2020, 40 (23): 8528- 8538. | |
Chen J, Luo S S, Zhou Z, et al. Research advances in nitrogen deposition effects on microbial processes involved in soil nitrogen cycling in tropical and subtropical forests. Acta Ecologica Sinica, 2020, 40 (23): 8528- 8538. | |
陈秀波, 段文标, 陈立新, 等. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征. 南京林业大学学报(自然科学版), 2021, 45 (2): 77- 86. | |
Chen X B, Duan W B, Chen L X, et al. Community structure and diversity of soil nirK-type denitrifying microorganisms in three forest types of primitive Pinus koraiensis mixed forest in Liangshui National Nature Reserve, Lesser Khingan Mountains. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (2): 77- 86. | |
陈秀波, 朱德全, 赵晨晨, 等. 凉水国家自然保护区不同林型红松林土壤nosZ型反硝化微生物群落组成和多样性分析. 林业科学, 2019, 55 (8): 106- 117. | |
Chen X B, Zhu D Q, Zhao C C, et al. Structure and diversity of soil nosZ-type denitrifying microbial community in different types of Pinus koraiensis forests in Liangshui National Nature Reserve. Scientia Silvae Sinicae, 2019, 55 (8): 106- 117. | |
楚秀丽, 王 艺, 金国庆, 等. 不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化. 林业科学, 2014, 50 (6): 152- 159. | |
Chu X L, Wang Y, Jin G Q, et al. Variation in growth and wood property and the structure differentiation of schima superba plantation with different sites, stand densities and ages. Scientia Silvae Sinicae, 2014, 50 (6): 152- 159. | |
代力民, 陈 高, 邓红兵, 等. 受干扰长白山阔叶红松林林分结构组成特征及健康距离评估. 应用生态学报, 2004, 15 (10): 1750- 1754.
doi: 10.3321/j.issn:1001-9332.2004.10.009 |
|
Dai L M, Chen G, Deng H B, et al. Structure characteristics and health distance assessment of various disturbed communities of Korean pine and broadleaved mixed forest in Changbai Mountains. Chinese Journal of Applied Ecology, 2004, 15 (10): 1750- 1754.
doi: 10.3321/j.issn:1001-9332.2004.10.009 |
|
杜 倩, 梁素钰, 李 琳, 等. 阔叶红松林土壤酶活性及微生物群落功能多样性分析. 森林工程, 2019, 35 (1): 1- 7. | |
Du Q, Liang S Y, Li L, et al. Soil enzyme activities and microbial community functional diversity of broad leaved Korean pine forest. Forest Engineering, 2019, 35 (1): 1- 7. | |
范雅倩, 安 菁, 梁 晨. 北京市松山国家级自然保护区典型植被群落的土壤微生物群落结构特征. 北方园艺, 2021, 45 (1): 81- 86. | |
Fan Y Q, An Q, Liang C. Soil microbial structure characteristics of typical vegetation communities in Beijing city Songshan National Nature Reserve. Northern Horticulture, 2021, 45 (1): 81- 86. | |
樊振华. 2010. 小陇山国家级自然保护区油松、华山松土壤微生物群落特征研究. 兰州: 西北师范大学. | |
Fan Z H. 2010. The study about soil microbial community under P. tabulaeformis Carr and P. armandii Franch in Xiaolong Mountain National Nature Reserve. Langzhou: Northwest Normal University . [in Chinese] | |
高珍珍, 王 蓉, 龚松玲, 等. 不同类型秸秆还田对稻田土壤nirK型反硝化细菌群落结构的影响. 土壤通报, 2020, 51 (4): 891- 896. | |
Gao Z Z, Wang R, Gong S L, et al. Effects of different types of straw returning on community structure of nirK-denitrifying bacteria in Paddy Soil. Chinese Journal of Soil Science, 2020, 51 (4): 891- 896. | |
胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展. 土壤通报, 2006, 37 (1): 170- 176.
doi: 10.3321/j.issn:0564-3945.2006.01.038 |
|
Hu Y L, Wang S L, Yan Z X. Research advances on the factors influencing the activity and community structure of soil microorganism. Chinese Journal of Soil Science, 2006, 37 (1): 170- 176.
doi: 10.3321/j.issn:0564-3945.2006.01.038 |
|
贾 鹏, 杜国祯. 生态学的多样性指数: 功能与系统发育. 生命科学, 2014, 26 (2): 153- 157. | |
Jia P, Du G J. Measuring functional and phylogenetic diversity in community ecology. Chinese Bulletin of Life Sciences, 2014, 26 (2): 153- 157. | |
李春平, 关文彬, 范志平, 等. 农田防护林生态系统结构研究进展. 应用生态学报, 2003, 14 (11): 2037- 2043. | |
Li C P, Guan W B, Fan Z P, et al. Advances in studies on the structure of farmland shelterbelt ecosystem. Chinese Journal of Applied Ecology, 2003, 14 (11): 2037- 2043. | |
李 刚, 修伟明, 王 杰, 等. 不同植被恢复模式下呼伦贝尔沙地土壤反硝化细菌nirK基因组成结构和多样性研究. 草业学报, 2015, 24 (1): 115- 123. | |
Li G, Xiu W J, Wang J, et al. Community structure and diversity of soil denitrifying bacteria of the nirK gene type under different vegetation restoration patterns in the Hulunbeier sandy land Inner Mongolia. Acta Prataculturae Sinica, 2015, 24 (1): 115- 123. | |
李 轩, 过志峰, 吴门新, 等. 华北地区土壤水分的时空变化特征. 应用生态学报, 2021, 32 (12): 4203- 4211. | |
Li X, Guo Z F, Wu M X, et al. Temporal and spatial variations of soil moisture in north China. Chinese Journal of Applied Ecology, 2021, 32 (12): 4203- 4211. | |
刘晨阳, 高成林, 赵 玥, 等. 基于16S rDNA基因高通量测序分析农田栽参土壤改良后的细菌群落结构. 分子植物育种, 2021, 19 (5): 1731- 1740. | |
Liu C Y, Gao C L, Zhao Y, et al. Analysis of bacterial community structure of farml and planted ginseng soil based on High-throughput sequencing of 16S rDNA gene. Molecular Plant Breeding, 2021, 19 (5): 1731- 1740. | |
罗 蓉. 2018. 黄土高原油松人工林参与土壤氮循环功能微生物群落结构研究. 西安: 西北农林科技大学. | |
Luo R. 2018. Study on the microbial community structure about soil nitrogen cycling in Pinus tabulaeformis plantation on the loess plateau. Xi’an: Northwest A & F University. [in Chinese] | |
聂浩亮, 薄慧娟, 张润哲, 等. 北京海坨山典型林分土壤有机碳含量及有机碳密度垂直分布特征. 林业科学研究, 2020, 33 (6): 155- 162. | |
Nie H L, Bo H J, Zhang R Z, et al. Vertical distribution characteristics of soil organic carbon content and organic carbon density of typical forest stands at Haituo mountain, Beijing. Forest Research, 2020, 33 (6): 155- 162. | |
邵玉琴, 赵 吉, 朱艳华, 等. 科尔沁不同类型沙地土壤微生物类群的研究. 内蒙古大学学报(自然科学版), 2007, 38 (6): 678- 682. | |
Shao Y Q, Zhao J, Zhu Y H, et al. Study on soil microorganism groups of different types of Sandy Land in Korqin Inner Mongolia. Journal of Inner Mongolia University(Natural Science Edition), 2007, 38 (6): 678- 682. | |
施 翔, 唐翠平, 吴 轲, 等. 准噶尔盆地农田防护林树种青杨的生长规律研究. 干旱区资源与环境, 2013, 27 (7): 155- 160. | |
Shi X, Tang C P, Wu K, et al. The growth law of farmland protective forest species Populus cathayana Rehd. in Junggar Basin. Journal of Arid Land Resources and Environment, 2013, 27 (7): 155- 160. | |
陶吉杨, 谭军利, 郑飞龙, 等. 宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响. 干旱地区农业研究, 2022, 40 (3): 207- 217. | |
Tao J Y, Tan J L, Zheng F L, et al. Effects of vegetation recovery modes on major enzyme activities, microbial diversity, and nutrients in hilly soils of southern Ningxia. Agricultural Research in the Arid Areas, 2022, 40 (3): 207- 217. | |
汪龙眠, 仇皓雨, 车昱晓, 等. NUA-DAS生态滤池脱氮效果与反硝化菌特征研究. 环境科学, 2016, 37 (7): 2659- 2665. | |
Wang L M, Qiu H Y, Che Y X, et al. Nitrogen removal and the characteristics of denitrification bacteria using NUA-DAS ecofilter. Environmental Science, 2016, 37 (7): 2659- 2665. | |
王蓥燕, 卢圣鄂, 陈小敏, 等. 2017. 若尔盖高原湿地泥炭沼泽土亚硝酸盐还原酶(nirK)反硝化细菌群落结构分析. 生态学报, 37(19): 6607−6615. | |
Wang Y Y, Lu S E, Chen X M, et al. 2007. Analyzing the nitrate reductase gene (nirK) community in the peat soil of the Zoige Wetland of the Tibetan Plateau. Acta Ecologica Sinica, 37(19): 6607−6615. [in Chinese] | |
夏北成. 植被对土壤微生物群落结构的影响. 应用生态学报, 1998, 9 (3): 73- 77.
doi: 10.3321/j.issn:1001-9332.1998.03.016 |
|
Xia B C. Effect of vegetation on structure of soil microbial community. Chinese Journal of Applied Ecology, 1998, 9 (3): 73- 77.
doi: 10.3321/j.issn:1001-9332.1998.03.016 |
|
阎恩荣, 王希华, 周 武. 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报, 2008, 54 (1): 1- 12.
doi: 10.3773/j.issn.1005-264x.2008.01.001 |
|
Yan E R, Wang X H, Zhou W. Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, east China. Chinese Journal of Plant Ecology, 2008, 54 (1): 1- 12.
doi: 10.3773/j.issn.1005-264x.2008.01.001 |
|
张杰铭, 余新晓, 贾国栋, 等. 坝下地区防护林不同树种生长特征. 应用生态学报, 2017, 28 (10): 3174- 3180. | |
Zhang J M, Yu X X, Jia G D, et al. Growth characteristics of different tree species in shelterbelts in the depression area of Hebei Province, China. Chinese Journal of Applied Ecology, 2017, 28 (10): 3174- 3180. | |
张 亮, 黄建国. 菜豆根瘤菌对土壤无机磷的活化释放作用. 土壤学报, 2012, 49 (5): 996- 1002.
doi: 10.11766/trxb201106130213 |
|
Zhang L, Huang J G. Effect of Rhizobium phaseoli on mobilization and release of inorganic phosphorus in soil. Acta Pedologica Sinica, 2012, 49 (5): 996- 1002.
doi: 10.11766/trxb201106130213 |
|
张旭志, 杨倩倩, 赵 俊, 等. 反硝化功能基因nirS和nirK及其检测技术研究进展. 微生物学杂志, 2018, 38 (4): 84- 91.
doi: 10.3969/j.issn.1005-7021.2018.04.012 |
|
Zhang X Z, Yang Q Q, Chen J, et al. Advances in denitrification functional gene nirS and nirK and their detection technology. Journal of Microbiology, 2018, 38 (4): 84- 91.
doi: 10.3969/j.issn.1005-7021.2018.04.012 |
|
Allison S D, Martiny J. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Science, 2008, 105 (Supplement1): 11512- 11519. | |
Braker G, Zhou J, Wu L, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Applied and Environmental Microbiology, 2000, 66 (5): 2096- 2104. | |
Bremer C, Braker G, Matthies D, et al. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Applied and Environmental Microbiology, 2007, 73 (21): 6876- 6884. | |
Chen J, Nie Y, Liu W, et al. Ammonia-Oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil. Frontiers in Microbiology, 2017, 24 (8): 13- 84. | |
Chen Y L, Kou D, Li F, et al. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions. Plant and Soil, 2018, 434 (1): 453- 466. | |
Deyn G, Putten W. Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 2005, 20 (11): 625- 633. | |
Ehrenfeld J G, Han X, Parsons W F J, et al. On the nature of environmental gradients: temporal and spatial variability of soils and vegetation in the New Jersey Pinelands. Journal of Ecology, 1997, 85 (6): 785- 798. | |
Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 2005, 71 (12): 8335- 8343. | |
Fazi S, Amalfitano S, et al. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environmental Microbiology, 2005, 7 (10): 1633- 1640. | |
Hallin S, Lindgren P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied & Environmental Microbiology, 1999, 65 (4): 1652- 1657. | |
Jahangir M, Khail M, Johnston P, et al. 2012. Denitrification potential in subsoils: a mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems & Environment, 147(1): 13−23. | |
Jones C M, Hallin S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. The ISME Journal, 2010, 4 (5): 633- 641.
doi: 10.1038/ismej.2009.152 |
|
Kandeler E, Brune T, Enowashu E, et al. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiology Ecology, 2009, 67 (3): 444- 454.
doi: 10.1111/j.1574-6941.2008.00632.x |
|
Kramer S B, Reganold J P, Glover J D, et al. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proceedings of the National Academy of Sciences, 2006, 103 (12): 4522- 4527.
doi: 10.1073/pnas.0600359103 |
|
Meng H, Wu R, Wang Y F, et al. A comparison of denitrifying bacterial community structures and abundance in acidic soils between natural forest and re-vegetated forest of Nanling Nature Reserve in southern China. Journal of Environmental Management, 2017, 198 (2): 41- 49. | |
Morales S E, Cosart T, Holben W E. Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME Journal, 2010, 4 (6): 799- 808.
doi: 10.1038/ismej.2010.8 |
|
Neyra C A, Dobereiner J, Lalande R, et al. Denitrification by N2-fixing Spirillum lipoferum. Canadian Journal of Microbiology, 1977, 23 (3): 300- 305.
doi: 10.1139/m77-044 |
|
Niu Y, Hu W, Zhou T, et al. Diversity of nirS and nirK denitrifying bacteria in rhizosphere and non-rhizosphere soils of halophytes in Ebinur Lake Wetland. Biotechnology & Biotechnological Equipment, 2022, 36 (1): 209- 219. | |
Park S, Kim H, Kim M, et al. Monitoring nitrate natural attenuation and analysis of indigenous micro-organism community in groundwater. Desalination and Water Treatment, 2016, 57 (51): 24096- 24108.
doi: 10.1080/19443994.2016.1145955 |
|
Qin H, Xing X, Tang Y, et al. Linking soil N2O emissions with soil microbial community abundance and structure related to nitrogen cycle in two acid forest soils. Plant and Soil, 2019, 435 (1): 95- 109. | |
Robertson G P, Paul E A, Harwood R R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 2000, 289 (5486): 1922- 1925.
doi: 10.1126/science.289.5486.1922 |
|
Santoro A E, Boehm A B, Francis C A. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Applied and Environmental Microbiology, 2006, 72 (3): 2102- 2109.
doi: 10.1128/AEM.72.3.2102-2109.2006 |
|
Shang Z H, Ding L L, Long R J, et al. Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2007, 16 (1): 34- 40. | |
Shaw L J, Nicol G W, Smith Z, et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environmental Microbiology, 2006, 8 (2): 214- 222.
doi: 10.1111/j.1462-2920.2005.00882.x |
|
Silvia P, Bohannan B J. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in Microbiology, 2016, 7, 1045. | |
Sprent J, Parsons R. Nitrogen fixation in legume and non-legume trees. Field Crops Research, 2000, 65 (2-3): 183- 196.
doi: 10.1016/S0378-4290(99)00086-6 |
|
Tang Y, Zhang X, Li D, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology and Biochemistry, 2016, 103, 284- 293.
doi: 10.1016/j.soilbio.2016.09.001 |
|
Xie Z, Roux X L, Wang C, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biology & Biochemistry, 2014, 77, 89- 99. | |
Zumft W. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Review, 1997, 61 (4): 533- 616. |
[1] | Guangdao Bao,Ting Liu,Zhonghui Zhang,Zhibin Ren,Chang Zhai,Mingming Ding,Xuefei Jiang. Remote Sensing Inversion of Effective Leaf Area Index of Four Coniferous Forest Types and Their Spatial Distribution Rule in Changbai Mountain [J]. Scientia Silvae Sinicae, 2024, 60(5): 127-138. |
[2] | Wenzheng Wang,Liguo Song,Qian Wang,Xiangrong Liu,Qiwu Sun,Lingyu Hou. Effects of Three Kinds of Trees on Soil Heavy Metal Mass Fraction and Microbial Community Composition in the Iron Tailing Area of Jiulong, Jiangxi [J]. Scientia Silvae Sinicae, 2024, 60(3): 78-86. |
[3] | Hong Xia,Chunyan Xia,Haiyan Song,Yu Du,Jianping Tao. Seed Rain, Soil Seed Bank, and Seedling Regeneration of Woody Plants in Three Karst Forest Communities on Jinfo Mountain, Chongqing [J]. Scientia Silvae Sinicae, 2022, 58(1): 1-11. |
[4] | Ting Ma,Chonggui Li,Fuquan Tang,Jie Lü. Extraction of Larch Plantation Based on Multi-Classifier Ensemble [J]. Scientia Silvae Sinicae, 2021, 57(11): 105-118. |
[5] | Ying Guo,Zengyuan Li,Erxue Chen,Xu Zhang,Lei Zhao,Yan Chen,Yahui Wang. A Deep Learning Method for Forest Fine Classification Based on High Resolution Remote Sensing Images: Two-Branch FCN-8s [J]. Scientia Silvae Sinicae, 2020, 56(3): 48-60. |
[6] | Lingbo Dong,Hezhi Wang,Zhaogang Liu. Dynamics of Spatial Point Patterns of Different Forest Types Blocks and Associations among the Blocks in Liangshui Nature Reserve [J]. Scientia Silvae Sinicae, 2019, 55(10): 138-151. |
[7] | He Tongxin, Sun Jianfei, Li Yanpeng, Yu Youzhi, Hu Baoqing, Wang Qingkui. Effects of Girdling on Soil Microbial Community Composition in Cunninghamia lanceolata and Pinus massoniana Plantations [J]. Scientia Silvae Sinicae, 2017, 53(6): 77-84. |
[8] | Zhao Peiping, Jiang Peikun, Meng Cifu, He Shanqiong. Changes in 13C NMR Spectroscopy of Leaf-Litter during The Decomposition in Four Subtropical Forest Types in Southern China [J]. Scientia Silvae Sinicae, 2017, 53(6): 127-134. |
[9] | Tian Jing, Xing Yanqiu, Yao Songtao, Zeng Xujing, Jiao Yitao. Comparison of Landsat-TM Image Forest Type Classification Based on Cellular Automata and BP Neural Network Algorithm [J]. Scientia Silvae Sinicae, 2017, 53(2): 26-34. |
[10] | Wan Jingjuan, Guo Jianfen, Ji Shurong, Ren Weiling, Yang Yusheng. Effects of Dissolved Organic Matter Input on Soil CO2 Emission and Microbial Community Composition in a Subtropical Forest [J]. Scientia Silvae Sinicae, 2016, 52(2): 106-113. |
[11] | Peng Shunlei;Wang Dexiang. Naturalness Assessment of the Main Forest Communities in Qinling Mountains [J]. Scientia Silvae Sinicae, 2011, 47(1): 135-142. |
[12] | Dong Xibin;Jiang Fan. Analysis of the Biodiversity Restoration of Different Forest Types in Maoer Mountainous Region [J]. Scientia Silvae Sinicae, 2008, 44(12): 77-82. |
[13] | Xu Kefu;Wu Zemin;Guan Lulu. Species Composition and Diversity of Different Urban Forest Types in Maanshan [J]. Scientia Silvae Sinicae, 2008, 44(10): 142-147. |
[14] | Wang Yuan;Wu Zemin;Zhang Lei;Zhao Xia;Guan Lulu. Urban Forest Mosaic and Its Gradient Analysis: A Case Study from Maanshan, Anhui, China [J]. Scientia Silvae Sinicae, 2007, 43(3): 51-58. |
[15] | Chen Erxue;Li Zengyuan;Tan Bingxiang;Liang Yuzhao;Zhang Zelu. Validation of Statistic Based Forest Types Classification Methods Using Hyperspectral Data [J]. Scientia Silvae Sinicae, 2007, 43(1): 84-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||