Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (4): 62-70.doi: 10.11707/j.1001-7488.LYKX20230646
Previous Articles Next Articles
Yujie Hang1,2,3(),Zhicheng Chen2,3,*,Lin Wang1,Baoliang Niu2,3,Songsong Liu4,Bo Yu4,Xiao Wang4,Shirong Liu2,3
Received:
2023-12-27
Online:
2024-04-25
Published:
2024-05-23
Contact:
Zhicheng Chen
E-mail:2511408067@qq.com
CLC Number:
Yujie Hang,Zhicheng Chen,Lin Wang,Baoliang Niu,Songsong Liu,Bo Yu,Xiao Wang,Shirong Liu. Anatomical Determinants of Wood Density of Eight Broad-Leaved Tree Species in Baotianman and Their Coordination and Trade-off with Leaf Traits[J]. Scientia Silvae Sinicae, 2024, 60(4): 62-70.
Table 1
Data summary for 21 functional traits measured in 8 broadleaf tree species"
性状 Trait | 平均值±标准差 Mean±SD | 变异系数 CV(%) | 最大值 Max | 最小值 Min |
LA/cm2 | 38.4±17.9 | 46.7 | 68.7 | 14.2 |
WD/(g·cm?3) | 0.59±0.09 | 15.8 | 0.75 | 0.41 |
RWCtlp(%) | 89.0±3.3 | 3.7 | 92.8 | 81.7 |
E | 0.18±0.07 | 37.9 | 0.32 | 0.10 |
VD/(N·mm?2) | 249.7±157.0 | 62.9 | 628.4 | 97.9 |
HVD/(μm) | 31.0±5.4 | 17.5 | 39.9 | 19.2 |
MaVD/(μm) | 45.9±8.0 | 17.5 | 54.1 | 28.8 |
MVD/(μm) | 27.5±4.9 | 17.9 | 36.6 | 17.6 |
VF(%) | 14.1±4.0 | 28.2 | 21.4 | 7.6 |
RPF(%) | 15.9±5.2 | 33.0 | 26.0 | 8.9 |
APF(%) | 10.3±3.7 | 35.9 | 13.5 | 4.1 |
PF(%) | 26.1±4.4 | 16.9 | 33.7 | 21.4 |
FF(%) | 59.8±5.4 | 9.0 | 68.2 | 53.3 |
FLA/μm2 | 68.7±24.4 | 35.5 | 96.9 | 18.0 |
FLD/μm | 8.9±2.0 | 22.1 | 11.0 | 4.6 |
FWA/μm2 | 47.5±11.8 | 24.9 | 65.0 | 29.1 |
FWT/μm | 1.5±0.43 | 28.6 | 2.2 | 0.86 |
RFL/(μm·μm?1) | 0.22±0.14 | 62.6 | 0.54 | 0.10 |
RFF(%) | 44.8±13.6 | 30.4 | 72.8 | 28.4 |
PFW(%) | 26.3±6.2 | 23.7 | 38.8 | 19.4 |
PFL(%) | 33.5±10.2 | 30.4 | 48.8 | 14.5 |
陈志成, 陆海波, 刘晓静, 等. 宝天曼三桠乌药对降雨减少后的生理生态响应. 林业科学研究, 2017, 30 (3): 430- 435. | |
Chen Z C, Lu H B, Liu X J, et al. Ecophysiological responses of Lindera obtusiloba to rainfall reduction in Baotianman nature reserve. Forest Research, 2017, 30 (3): 430- 435. | |
刘 尧, 于 馨, 于 洋, 等. R程序包“rdacca. hp”在生态学数据分析中的应用: 案例与进展. 植物生态学报, 2023, 47 (1): 134- 144.
doi: 10.17521/cjpe.2022.0314 |
|
Liu Y, Yu X, Yu Y, et al. Application of "rdacca. hp” R package in ecological data analysis: case and progress. Chinese Journal of Plant Ecology, 2023, 47 (1): 134- 144.
doi: 10.17521/cjpe.2022.0314 |
|
曾凡江, 李向义, 张希明, 等. 2010. 极端干旱条件下多年生植物水分关系参数变化特性. 生态学杂志, 29(2): 207–214. | |
Zeng F J, Li X Y, Zhang X M , et al. 2010. Variation characteristics of perennial plant species water relation parameters under extreme arid condition. Chinese Journal of Ecology, 29(2): 207–214. [in Chinese] | |
Arenas-Navarro M, Oyama K, García-Oliva F, et al. The role of wood anatomical traits in the coexistence of oak species along an environmental gradient. AoB Plants, 2021, 13 (6): plab066.
doi: 10.1093/aobpla/plab066 |
|
Bartlett M K, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 2012, 15 (5): 393- 405.
doi: 10.1111/j.1461-0248.2012.01751.x |
|
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12 (4): 351- 366.
doi: 10.1111/j.1461-0248.2009.01285.x |
|
Chen Z C, Liu S R, Lu H B, et al. Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species. AoB Plants, 2019, 11 (5): plz058.
doi: 10.1093/aobpla/plz058 |
|
Chen Z C, Zhang Y T, Yuan W J. et al. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric–anisohydric spectrum. Tree Physiology, 2021, 41 (9): 1601- 1610.
doi: 10.1093/treephys/tpab028 |
|
Chen Z C, Zhu S D, Zhang Y T, et al. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology, 2020, 40 (8): 1029- 1042.
doi: 10.1093/treephys/tpaa046 |
|
Gartner B L, Moore J R, Gardiner B A. Gas in stems: abundance and potential consequences for tree biomechanics. Tree Physiology, 2004, 24 (11): 1239- 1250.
doi: 10.1093/treephys/24.11.1239 |
|
Lai J S, Zou Y, Zhang J L, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp Rpackage. Methods in Ecology and Evolution, 2022, 13 (4): 782- 788.
doi: 10.1111/2041-210X.13800 |
|
Liu C C, Sack L, Li Y, et al. Relationships of stomatal morphology to the environment across plant communities. Nature Communications, 2023, 14, 6629.
doi: 10.1038/s41467-023-42136-2 |
|
Martínez-Cabrera H I, Jones C S, Espino S, et al. Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany, 2009, 96 (8): 1388- 1398.
doi: 10.3732/ajb.0800237 |
|
Morris H, Plavcová L, Cvecko P, et al. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 2016, 209 (4): 1553- 1565.
doi: 10.1111/nph.13737 |
|
Poorter L, McDonald I, Alarcón A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 2010, 185 (2): 481- 492.
doi: 10.1111/j.1469-8137.2009.03092.x |
|
Pratt R B, Jacobsen A L, Ewers F W, et al. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 2007, 174 (4): 787- 798.
doi: 10.1111/j.1469-8137.2007.02061.x |
|
Preston K A, Cornwell W K, DeNoyer J L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 2006, 170 (4): 807- 818.
doi: 10.1111/j.1469-8137.2006.01712.x |
|
Santiago L S, De Guzman M E, Baraloto C, et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 2018, 218 (3): 1015- 1024.
doi: 10.1111/nph.15058 |
|
Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. | |
Veech J A. A probabilistic model for analysing species co‐occurrence. Global Ecology and Biogeography, 2013, 22 (2): 252- 260.
doi: 10.1111/j.1466-8238.2012.00789.x |
|
Wang Y Q, Ni M Y, Zeng W H, et al. Co-ordination between leaf biomechanical resistance and hydraulic safety across 30 sub-tropical woody species. Annals of Botany, 2021, 128 (2): 183- 191.
doi: 10.1093/aob/mcab055 |
|
Wheeler J K, Sperry J S, Hacke U G, et al. 2005. Inter‐vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade‐off in xylem transport. Plant, Cell and Environment, 28(6): 800−812. | |
Wright I J, Ackerly D D, Bongers F, et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 2007, 99 (5): 1003- 1015.
doi: 10.1093/aob/mcl066 |
|
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428, 821- 827.
doi: 10.1038/nature02403 |
|
Zheng J M, Martínez-Cabrera H I. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 2013, 112 (5): 927- 935.
doi: 10.1093/aob/mct153 |
|
Ziemińska K, Butler D W, Gleason S M, et al. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants, 2013, 5, plt046. |
[1] | Hongxian Zhao,Tong Su,Ruifu Wang,Yanli Sun,Yonglong Gao,Jichao Wei,Xinhao Li,Yun Tian,Xin Jia,Tianshan Zha. Seasonal Variation and Environmental Control of Leaf Resource Use Efficiencies of an Understory Shrub, Rhamnus parvifolia in Pinus tabuliformis Forest in Miyun, Beijing [J]. Scientia Silvae Sinicae, 2023, 59(7): 1-11. |
[2] | Jianfeng Yao,Xuzhan Guo,Liyong Fu,Xuefeng Wang,Xiangdong Lei,Jun Lu,Yili Zheng,Xinyu Song. Indirect Measurement of Wood Density by Micro Drill Resistance Method [J]. Scientia Silvae Sinicae, 2022, 58(9): 138-147. |
[3] | Ze Gu,Xiaodong Liu,Feng Chen. Response of Twig Functional Traits of Pinus tabuliformis to Different Fire Severities [J]. Scientia Silvae Sinicae, 2022, 58(8): 99-108. |
[4] | Houben Zhao,Guangyi Zhou,Zhaojia Li,Zhijun Qiu,Zhongmin Wu,Xu Wang. Biomass Allocation and Allometric Growth Models of Four Common Tree Species in Southern Subtropical Evergreen Broad-Leaved Forest [J]. Scientia Silvae Sinicae, 2022, 58(2): 23-31. |
[5] | Ruijing Xu,Xuan Hu,Guanglu Liu,Wen Guo,Changqiang Liang,Xianghe Kong. Differences of Leaf Functional Traits Between Two Climbing Bamboo Species in Tropical Lowland Rainforest of Hainan Island [J]. Scientia Silvae Sinicae, 2021, 57(12): 155-166. |
[6] | Xue Zhang,Quanlin Zhong,Baoyin Li,Xiangming Yao,Chaobin Xu,Dongliang Cheng,Yuefang Zheng,Hua Yu. Relationship between the Leaf Functional Traits and the Diameter Growth in Even-Aged Stands of Zenia insignis [J]. Scientia Silvae Sinicae, 2020, 56(5): 168-175. |
[7] | Hao Minhui, Li Xiaoyu, Xia Mengjie, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Effects of Tending Felling on Functional and Phylogenetic Structures in a Multi-Species Temperate Secondary Forest at Jiaohe in Jilin Province [J]. Scientia Silvae Sinicae, 2018, 54(5): 1-9. |
[8] | Tan Nian, Wang Xueshun, Huang Anmin, Wang Chen. Wood Density Prediction of Cunninghamia lanceolata Based on Gray Wolf Algorithm SVM and NIR [J]. Scientia Silvae Sinicae, 2018, 54(12): 137-141. |
[9] | Zhao Fencheng, Guo Wenbing, Zhong Suiying, Deng Leping, Wu Huishan, Lin Changming, Liao Fangyan, Tan Zhiqiang, Li Yiliang. Effects of Indirect Selection on Wood Density Based on Resistograph Measurement of Slash Pine [J]. Scientia Silvae Sinicae, 2018, 54(10): 172-179. |
[10] | Zhang Shuainan, Luan Qifu, Jiang Jingmin. Genetic Variation Analysis for Growth and Wood Properties of Slash Pine Based on The Non-Destructive Testing Technologies [J]. Scientia Silvae Sinicae, 2017, 53(6): 30-36. |
[11] | Peng Hui, Jiang Jiali, Zhan Tianyi, Lü Jianxiong. Influence of Density and Moisture Content on Ultrasound Velocities along the Longitudinal Direction in Wood [J]. Scientia Silvae Sinicae, 2016, 52(10): 117-124. |
[12] | An Hailong, Xie Qianjin, Liu Chao, Xia Xinli, Yin Weilun. Effects of Water Stress and Provenance on Leaf Functional Traits of Salix gordejevii [J]. Scientia Silvae Sinicae, 2015, 51(10): 75-84. |
[13] | Yan Enrong, Wang Liangyan, Li Xiupeng. Effectiveness of Tree Functional Trait-Based Approach for Reconstructing Typhoon- and Frost-Resistant Plantations in the Low Hills of Coastland in Eastern Zhejiang Province [J]. Scientia Silvae Sinicae, 2014, 50(6): 98-106. |
[14] | Li Yaoxiang, Jiang Lichun. Modeling Wood Density with Two-Level Linear Mixed Effects Models for Dahurian Larch [J]. Scientia Silvae Sinicae, 2013, 49(7): 91-98. |
[15] | Hao Xiaofeng, Yu Changming, Jiang Jiali, Lü Jianxiong, Xu Kang. A Preliminary Study on Modeling of Earlywood and Latewood Density Distribution during the Fast Growth Period [J]. Scientia Silvae Sinicae, 2013, 49(10): 118-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||