Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (6): 37-43.doi: 10.11707/j.1001-7488.LYKX20220801
Previous Articles Next Articles
Minghui Da1,2,Songsong Ran1,2,Yanrong Fu1,2,Bingzhang Zou3,Sirong Wang3,Xiaohua Wan1,2,Zaipeng Yu1,2,Zhiqun Huang1,2,*
Received:
2022-11-11
Accepted:
2024-05-08
Online:
2024-06-25
Published:
2024-07-16
Contact:
Zhiqun Huang
CLC Number:
Minghui Da,Songsong Ran,Yanrong Fu,Bingzhang Zou,Sirong Wang,Xiaohua Wan,Zaipeng Yu,Zhiqun Huang. Effects of Neighborhood Tree Species Diversity on the Stoichiometric Ratios of Nitrogen to Potassium, Calcium, and Magnesium in Cunninghamia lanceolata leaves[J]. Scientia Silvae Sinicae, 2024, 60(6): 37-43.
Table 1
Best-fitting mixed-effects model for the effects of neighborhood species richness, functional trait dissimilarity, and neighborhood height index on foliar N∶K and N∶Ca and N∶Mg ratios of focal tree"
变量 Variable | 系数 Estimate | 标准误 SE | 自由度 df | t值 t value | P值 P value | R2m | R2c | |
叶片氮钾比 | Intercept | 0.50 | 0.04 | 31.28 | 12.33 | < 0.001 | 0.04 | 0.37 |
Foliar N∶K | SLA_diss | ?0.08 | 0.03 | 117.90 | ?2.50 | 0.013 | ||
叶片氮钙比 | Intercept | 1.62 | 0.06 | 31.72 | 25.83 | < 0.001 | 0.07 | 0.53 |
Foliar N∶Ca | NHI | ?0.10 | 0.03 | 247.16 | ?4.06 | < 0.001 | ||
RTD_diss | ?0.02 | 0.04 | 164.38 | ?0.59 | 0.553 | |||
NHI x RTD_diss | ?0.08 | 0.03 | 247.60 | ?2.68 | 0.008 | |||
叶片氮镁比 | Intercept | 2.66 | 0.04 | 37.91 | 64.49 | < 0.001 | 0.09 | 0.39 |
Foliar N∶Mg | DIA | 0.07 | 0.02 | 259.32 | 3.35 | 0.001 | ||
NSR | 0.08 | 0.04 | 195.08 | 2.12 | 0.035 | |||
SLA_diss | ?0.09 | 0.03 | 244.45 | ?2.63 | 0.009 | |||
NSR x SLA_diss | ?0.04 | 0.02 | 130.10 | ?1.58 | 0.117 |
国家林业和草原局. 2019. 中国森林资源报告(2014—2018). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019. National forest resources statistics(2014—2018). Beijing: China Forestry Press. [in Chinese] | |
李成忠, 陶 俊, 孙 燕, 等. 2012. 喷钙对芍药花茎品质及叶片光合特性的影响. 生态学杂志, 31(11): 2817−2822. | |
Li C Z, Tao J, Sun Y, et al. 2012. Effects of spraying calcium on the inflorescence stem quality and leaf photosynthesis of herbaceous peony (Paeonia lactiflora Pall.). Chinese Journal of Ecology, 31(11): 2817−2822 [in Chinese] | |
刘世荣, 杨予静, 王 晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营. 生态学报, 2018, 38 (1): 1- 10.
doi: 10.1016/j.chnaes.2017.02.003 |
|
Liu S R, Yang Y J, Wang H. Development strategy and management countermeasures of planted in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing for enhancing quality and benefits of ecosystem services. Acta Ecologica Sinica, 2018, 38 (1): 1- 10.
doi: 10.1016/j.chnaes.2017.02.003 |
|
冉松松. 2022. 邻域树种多样性对杉木生长、养分含量和水分利用效率的影响. 福州: 福建师范大学. | |
Ran S S. 2022. Effects of neighborhood tree species diversity on growth, nutrient content and water use efficiency of Cunninghamia lanceolata. Fuzhou: Fujian Normal University. [in Chinese] | |
王子奇, 查天山, 贾 昕, 等. 油蒿光合参数季节动态及其与叶氮含量和比叶面积的关系. 生态学杂志, 2017, 36 (4): 916- 924. | |
Wang Z Q, Zha T S, Jia X, et al. Seasonal variation in photosynthesis parameters of Artemisia ordosica in relation to leaf nitrogen and specific leaf area. Chinese Journal of Ecology, 2017, 36 (4): 916- 924. | |
Amin A, Zuecco G, Geris J, et al. Depth distribution of soil water sourced by plants at the global scale: a new direct inference approach. Ecohydrology, 2020, 13 (2): e2177.
doi: 10.1002/eco.2177 |
|
Bartsch N. Element release in beech (Fagus sylvatica L. ) forest gaps. Water Air and Soil Pollution, 2000, 122 (1-2): 3- 16. | |
Bongers F J, Schmid B, Sun Z K, et al. Growth-trait relationships in subtropical forest are stronger at higher diversity. Journal of Ecology, 2020, 108 (1): 256- 266.
doi: 10.1111/1365-2745.13242 |
|
Bowman W D, Cleveland C C, Halada L, et al. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1 (11): 767- 770.
doi: 10.1038/ngeo339 |
|
Braun S, Schindler C, Rihm B. Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate. Science of the Total Environment, 2017, 599, 637- 646. | |
Cadotte M, Albert C H, Walker S C. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology Letters, 2013, 16 (10): 1234- 1244.
doi: 10.1111/ele.12161 |
|
Cakmak I, Schjoerring J K. Special topics in potassium and magnesium research. Physiologia Plantarum, 2008, 133 (4): 623- 623.
doi: 10.1111/j.1399-3054.2008.01146.x |
|
Chen X L, Chen H Y H, Searle E B, et al. Negative to positive shifts in diversity effects on soil nitrogen over time. Nature Sustainability, 2021, 4 (3): 225- 234. | |
Chen Y X, Wright S J, Muller-Landau H C, et al. Positive effects of neighborhood complementarity on tree growth in a Neotropical forest. Ecology, 2016, 97 (3): 776- 785.
doi: 10.1890/15-0625.1 |
|
Coates K D, Canham C D, Beaudet M, et al. Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecology and Management, 2003, 186 (1-3): 297- 310.
doi: 10.1016/S0378-1127(03)00301-3 |
|
Davrinche A, Haider S. Intra-specific leaf trait responses to species richness at two different local scales. Basic and Applied Ecology, 2021, 55, 20- 32.
doi: 10.1016/j.baae.2021.04.011 |
|
Fernandez-de-Una L, McDowell N G, Canellas I, et al. Disentangling the effect of competition, CO2 and climate on intrinsic water-use efficiency and tree growth. Journal of Ecology, 2016, 104 (3): 678- 690.
doi: 10.1111/1365-2745.12544 |
|
Fichtner A, Hardtle W, Bruelheide H, et al. Neighbourhood interactions drive overyielding in mixed-species tree communities. Nature Communications, 2018, 9, 1144.
doi: 10.1038/s41467-018-03529-w |
|
Fichtner A, Hardtle W, Li Y, et al. From competition to facilitation: how tree species respond to neighbourhood diversity. Ecology Letters, 2017, 20 (7): 892- 900.
doi: 10.1111/ele.12786 |
|
Forrester D I , Bauhus J. A review of processes behind diversity-productivity relationships in forests. Current Forestry Reports, 2016, 2 (1): 45- 61. | |
Freschet G T, Swart E M, Cornelissen J H C. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytologist, 2015, 206 (4): 1247- 1260.
doi: 10.1111/nph.13352 |
|
Furey G N , Tilman D. 2021. Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America, 118(49): e2111321118 | |
Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 2011, 14 (8): 788- 796.
doi: 10.1111/j.1461-0248.2011.01641.x |
|
Huang Z Q, Ran S S, Fu Y R, et al. Functionally dissimilar neighbours increase tree water use efficiency through enhancement of leaf phosphorus concentration. Journal of Ecology, 2022, 110 (9): 2179- 2189.
doi: 10.1111/1365-2745.13941 |
|
Jansen K, von Oheimb G, Bruelheide H, et al. Tree species richness modulates water supply in the local tree neighbourhood: evidence from wood delta C-13 signatures in a large-scale forest experiment. Proceedings of the Royal Society B-Biological Sciences, 2021, 288 (1946): 20203100.
doi: 10.1098/rspb.2020.3100 |
|
Kramer-Walter K R, Bellingham P J, Millar T R, et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 2016, 104 (5): 1299- 1310.
doi: 10.1111/1365-2745.12562 |
|
Lasky J R, Uriarte M, Boukili V K, et al. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (15): 5616- 5621. | |
Lawniczak A E, Gusewell S, Verhoeven J T A. Effect of N∶ K supply ratios on the performance of three grass species from herbaceous wetlands. Basic and Applied Ecology, 2009, 10 (8): 715- 725.
doi: 10.1016/j.baae.2009.05.004 |
|
Li Y, Krober W, Bruelheide H, et al. Crown and leaf traits as predictors of subtropical tree sapling growth rates. Journal of Plant Ecology, 2017, 10 (1): 136- 145.
doi: 10.1093/jpe/rtw041 |
|
Liu X J, Tan N D, Zhou G Y, et al. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant and Soil, 2021, 464 (1-2): 257- 272.
doi: 10.1007/s11104-021-04940-x |
|
Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412 (6842): 72- 76.
doi: 10.1038/35083573 |
|
Lu X K, Mao Q G, Gilliam F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 2014, 20 (12): 3790- 3801.
doi: 10.1111/gcb.12665 |
|
Ma J, Chen L, Mi X, et al. The interactive effects of soil fertility and tree mycorrhizal association explain spatial variation of diversity–biomass relationships in a subtropical forest. Journal of Ecology, 2023, 111 (5): 1037- 1049. | |
Mao J H, Mao Q G, Zheng M H, et al. 2020. Responses of foliar nutrient status and stoichiometry to nitrogen addition in different ecosystems: a meta-analysis. Journal of Geophysical Research-Biogeosciences, 125(2):e2019JG005347. | |
McLaughlin S B, Wimmer R. Tansley Review No. 104 - Calcium physiology and terrestrial ecosystem processes. New Phytologist, 1999, 142 (3): 373- 417.
doi: 10.1046/j.1469-8137.1999.00420.x |
|
Michaels A F. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Science, 2003, 300 (5621): 906- 907.
doi: 10.1126/science.1083140 |
|
Midgley G F. Biodiversity and ecosystem function. Science, 2012, 335 (6065): 174- 175.
doi: 10.1126/science.1217245 |
|
Perakis S, Maguire D, Bullen T, et al. Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range. Ecosystems, 2006, 9 (1): 63- 74.
doi: 10.1007/s10021-004-0039-5 |
|
Sardans J , Penuelas J. Potassium: a neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24 (3): 261- 275.
doi: 10.1111/geb.12259 |
|
Schulze E D. Air pollution and forest decline in a Spruce (Picea abies) forest. Science, 1989, 244 (4906): 776- 783. | |
Tian D S , Niu S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10 (2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
|
Watanabe T, Broadley M R, Jansen S, et al. Evolutionary control of leaf element composition in plants. New Phytologist, 2007, 174 (3): 516- 523.
doi: 10.1111/j.1469-8137.2007.02078.x |
|
Xu L C, Xing A J, Du E Z, et al. Effects of nitrogen addition on leaf nutrient stoichiometry in an old-growth boreal forest. Ecosphere, 2021, 12 (1): e03335.
doi: 10.1002/ecs2.3335 |
|
Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology, 2012, 100 (3): 742- 749.
doi: 10.1111/j.1365-2745.2011.01944.x |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||