Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (7): 140-148.doi: 10.11707/j.1001-7488.LYKX20220547
Previous Articles Next Articles
Kangjie Jiang,Wenjuan Wu*,Lijing Huang,Jiaquan Li,Kongyan Li
Received:
2022-08-07
Online:
2024-07-25
Published:
2024-08-19
Contact:
Wenjuan Wu
CLC Number:
Kangjie Jiang,Wenjuan Wu,Lijing Huang,Jiaquan Li,Kongyan Li. Effect Mechanism of Lignin Isolated from Diverse Types Woods on Cellulase Adsorption[J]. Scientia Silvae Sinicae, 2024, 60(7): 140-148.
Table 1
Assignments of 1H-13C correlation peaks in the 2D NMR spectra of MWLs"
标签Sign | δC/δH/ppm | 归属Assignments |
Cα | 84.8/4.63 | 树脂醇结构Cα—Hα Cα—Hα in resinol substructures |
Cβ | 53.9/3.06 | 树脂醇结构Cβ—Hβ Cβ—Hβ in resinol substructures |
Cγ | 71.9/4.19&71.7/3.83 | 树脂醇结构Cγ—Hγ Cγ—Hγ in resinol substructures |
Aγ | 60.3/3.72 | β-O-4结构中Cγ—Hγ Cγ—Hγ in β-O-4 substructures |
Aα(G) | 71.6/4.74 | β—O—4连接G单元Cα—Hα Cα—Hα in β—O—4 substructures linked to a G unit |
Aα(S) | 72.2/4.86 | β—O—4连接S单元Cα—Hα Cα—Hα in β—O—4 substructures linked to a S unit |
Aβ(G) | 84.3/4.29 | β—O—4连接S单元Cβ—Hβ Cβ—Hβ in β—O—4 substructures linked to a S unit |
Aβ(S) | 86.4/4.11 | β—O—4连接G单元Cβ—Hβ Cβ—Hβ in β—O—4 substructures linked to a G unit |
Bα | 87.5/5.44 | 苯基香豆满结构Cα—Hα Cα—Hα in phenylcoumaran substructures |
Bγ | 62.6/3.67 | 苯基香豆满结构Cγ—Hγ Cγ—Hγ in phenylcoumaran substructures |
Iγ | 62.0/4.07 | 肉桂醇末端基Cγ—Hγ Cγ—Hγ in cinnamyl alcohol end-groups |
Iα | 129.1/6.46 | 肉桂醇末端基Cα—Hα Cα—Hα in cinnamyl alcohol end-groups |
S2,6 | 104.5/6.70 | 紫丁香基单元C2,6—H2,6 C2,6—H2,6 in syringyl units |
S'2,6 | 106.9/7.31 | 氧化(CαOOH)紫丁香基单元C2,6—H2,6 C2,6—H2,6 in oxidized (CαOOH) syringyl units |
G2 | 111.6/6.99 | 愈创木基单元C2—H2 C2—H2 in guaiacyl units |
G5 | 115.1/6.71 | 愈创木基单元C5—H5 C5—H5 in guaiacyl units |
G6 | 119.6/6.77 | 愈创木基单元C6—H6 C6—H6 in guaiacyl units |
PAC2,6 | 131.9/7.51 | 对香豆酸结构C2,6—H2,6 C2,6—H2,6 in p-coumarate |
Jβ | 127.0/6.77 | 肉桂醛末端基Cβ—Hβ Cβ—Hβ in cinnamyl aldehyde end-groups |
Jα | 154.3/7.36 | 肉桂醛末端基Cα—Hα Cα—Hα in cinnamyl aldehyde end-groups |
黄丽菁, 吴彩文, 邹春阳, 等. 木质素与酶的作用机制及其在纤维素酶水解中的影响研究进展. 西北林学院学报, 2021, 36 (2): 142- 148.
doi: 10.3969/j.issn.1001-7461.2021.02.21 |
|
Huang L J, Wu C W, Zou C Y, et al. The action mechanism of lignin-enzyme and research progress of its influence on enzymatic hydrolysis. Journal of Northwest Forestry University, 2021, 36 (2): 142- 148.
doi: 10.3969/j.issn.1001-7461.2021.02.21 |
|
文甲龙. 2014. 生物质木质素结构解析及其预处理解离机制研究. 北京: 北京林业大学. | |
Wen J L. 2014. Structural elucidation of lignin from biomass and its dissociative mechanism during pretreatment process. Beijing: Beijing Forestry University. [in Chinese] | |
Berlin A, Balakshin M, Gilkes N, et al. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 2006, 125 (2): 198- 209.
doi: 10.1016/j.jbiotec.2006.02.021 |
|
Bjökman A. Studies on finely divided wood (I) Extraction of lignin with neutral solvents. Svensk Papperstidn, 1956, 59, 477- 485. | |
Bjökman A. Lignin and lignin-carbohydrate complexes. Industrial & Engineering Chemistry, 1957, 49 (9): 1395- 1398. | |
Borchardt L G, Piper C V. A gas chromatographic method for carbohydrates as alditol-acetates. Tappi, 1970, 53, 257- 260. | |
Dence C W, Lin S Y. 1992. Introduction in methods in lignin chemistry. Heidelberg: Springer Verlag Press. | |
Feiler A A, Sahlholm A, Sandberg T, et al. Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D). Journal of Colloid and Interface Science, 2007, 315 (2): 475- 481.
doi: 10.1016/j.jcis.2007.07.029 |
|
Guo F F, Shi W J, Sun W, et al. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnology for Biofuels, 2014, 7 (1): 38.
doi: 10.1186/1754-6834-7-38 |
|
Hu G, Heitmann J A Jr, Rojas O J. In situ monitoring of cellulase activity by microgravimetry with a quartz crystal microbalance. The Journal of Physical Chemistry B, 2009, 113 (44): 14761- 14768.
doi: 10.1021/jp907155v |
|
Huang L J, Li P H, Jiang K J, et al. Investigation of the interaction mechanism between lignin structural units and enzyme. Journal of Renewable Materials, 2023, 11 (4): 1613- 1626.
doi: 10.32604/jrm.2022.023605 |
|
Kim J E, Lee J W. Enzyme adsorption properties on dilute acid pretreated biomass by low vacuum-scanning electron microscopy and structural analysis of lignin. Bioresource Technology, 2018, 262, 107- 113.
doi: 10.1016/j.biortech.2018.04.068 |
|
Koupaie E H, Dahadha S, Bazyar Lakeh A A, et al. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-a review. Journal of Environmental Management, 2019, 233, 774- 784.
doi: 10.1016/j.jenvman.2018.09.106 |
|
Li M F, Yi L, Bin L, et al. Comparison of nonproductive adsorption of cellulase onto lignin isolated from pretreated lignocellulose. Cellulose, 2020, 27 (14): 7911- 7927.
doi: 10.1007/s10570-020-03357-6 |
|
Li M H, Yuan Y F, Zhu Y S, et al. Comparison of sulfomethylated lignin from poplar and masson pine on cellulase adsorption and the enzymatic hydrolysis of wheat straw. Bioresource Technology, 2022, 343, 126142.
doi: 10.1016/j.biortech.2021.126142 |
|
Li M, Pu Y Q, Ragauskas A J. Current understanding of the correlation of lignin structure with biomass recalcitrance. Frontiers in Chemistry, 2016, 4, 45. | |
Li M, Si S L, Hao B, et al. Mild alkali -pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource technology, 2014, 169, 447- 454.
doi: 10.1016/j.biortech.2014.07.017 |
|
Li X, Zheng Y. Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 2017, 35 (4): 466- 489.
doi: 10.1016/j.biotechadv.2017.03.010 |
|
Liu H, Sun J L, Leu S Y, et al. 2016. Toward a fundamental understanding of cellulase-lignin interactions in the whole slurry enzymatic saccharification process. Biofuels, Bioproducts and Biorefining, 10(5): 648-663. | |
Nakagame S, Chandra R P, Saddler J N. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnology and Bioengineering, 2010, 105 (5): 871- 879.
doi: 10.1002/bit.22626 |
|
Palonen H, Tjerneld F, Zacchi G, et al. Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 2004, 107 (1): 65- 72.
doi: 10.1016/j.jbiotec.2003.09.011 |
|
Pareek N, Gillgren T, Jönsson L J. Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology, 2013, 148, 70- 77.
doi: 10.1016/j.biortech.2013.08.121 |
|
Samuel R, Foston M, Jiang N, et al. Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polymer Degradation and Stability, 2011, 96 (11): 2002- 2009.
doi: 10.1016/j.polymdegradstab.2011.08.015 |
|
Song J L, Yang F, Zhang Y, et al. Interactions between fungal cellulases and films of nanofibrillar cellulose determined by a quartz crystal microbalance with dissipation monitoring (QCM-D). Cellulose, 2017, 24 (5): 1947- 1956.
doi: 10.1007/s10570-017-1234-9 |
|
Tan L P, Sun W, Li X Z, et al. Bisulfite pretreatment changes the structure and properties of oil palm empty fruit bunch to improve enzymatic hydrolysis and bioethanol production. Biotechnology Journal, 2015, 10 (6): 915- 925.
doi: 10.1002/biot.201400733 |
|
Turon X, Rojas O J, Deinhammer R S. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24 (8): 3880- 3887.
doi: 10.1021/la7032753 |
|
Wen J L, Sun S L, Xue B L, et al. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 2013, 6 (1): 359- 391.
doi: 10.3390/ma6010359 |
|
Xu C, Zhang J, Zhang Y, et al. Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis. International Journal of Biological Macromolecules, 2019, 141, 484- 492.
doi: 10.1016/j.ijbiomac.2019.08.263 |
|
Yu Z Y, Gwak K S, Treasure T, et al. Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem, 2014, 7 (7): 1942- 1950.
doi: 10.1002/cssc.201400042 |
|
Zhang L M, Gellerstedt G. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magnetic Resonance in Chemistry: MRC, 2007, 45 (1): 37- 45.
doi: 10.1002/mrc.1914 |
|
Zou C Y, Li J Q, Wu W J. 2022. Study on differences in the enzyme hydrolysis induced from lignins from diverse types of lignocellulosic biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4): 9293−9309. |
[1] | Tengfei Ma,Yue Liu,Yawei Zhan,Meixin Wang,Zhiqiang Li. Pretreatment Technology on Bamboo for Monosaccharides Production under Enzymatic Hydrolysis: A Review [J]. Scientia Silvae Sinicae, 2024, 60(3): 150-159. |
[2] | Yan Lu,Jiaqi Li,Yuxuan Ma,Huiting Xue,Guanhua Li. Recent Progress on Recalcitrance of Biomass [J]. Scientia Silvae Sinicae, 2024, 60(3): 160-168. |
[3] | Chunyang Zou,Wenjuan Wu. Effect of Lignin Structural Unit on Cellulase Adsorption [J]. Scientia Silvae Sinicae, 2023, 59(6): 141-148. |
[4] | Linxin Dai,Zhihui Wang,Zhenrui Li,Jiajun Wang,Xing’e Liu,Jialong Wen,Jianfeng Ma. Pyrolysis Characteristics of the Main Components of Bamboo Cell Wall Using TG-FTIR [J]. Scientia Silvae Sinicae, 2023, 59(11): 85-94. |
[5] | Yajing Xu,Jiawei Wang,Yanqiu Zhao,Cheng Jiang,Lichao Huang,Yi An,Wei Zeng,Jin Zhang,Mengzhu Lu. Effect of PagMSBP1/2a Gene of 84K Poplar on Lignin Biosynthesis [J]. Scientia Silvae Sinicae, 2022, 58(6): 56-65. |
[6] | Youcai Gui,Songlin Zuo,Kainan Jin. Preparation of High-Surface-Area Carbon Foam by Self-Bubbling Method of Lignin [J]. Scientia Silvae Sinicae, 2022, 58(3): 139-148. |
[7] | Ru Jia,Haiyan Sun,Yurong Wang,Rui Wang,Rongjun Zhao,Haiqing Ren. Relativity of Microstructures and Mechanical Properties of Juvenile Woods of 10-Year-Old New Chinese Fir Clones 'Yang 020' and 'Yang 061' [J]. Scientia Silvae Sinicae, 2021, 57(5): 165-175. |
[8] | Gangying Hui,Zhonghua Zhao,Gongqiao Zhang,Yanbo Hu. The Role of Random Structural Pattern Based on Uniform Angle Index in Maintaining Forest Stability [J]. Scientia Silvae Sinicae, 2021, 57(2): 22-30. |
[9] | Xuejiao He,Liwei Chu,Shuangshuang Wen,Mengzhu Lu,Fang Tang. Study on the Gravity Response and Vascular Structure of Monocotyledons with Maize As An Example [J]. Scientia Silvae Sinicae, 2021, 57(2): 93-102. |
[10] | Sheng Yang,Gaiyun Li. Chemical Composition Heterogeneity of Catalpa bungeana Wood [J]. Scientia Silvae Sinicae, 2021, 57(1): 169-177. |
[11] | Wenjuan Wu,Chunyang Zou,Lijing Huang,Yongcan Jin. Dissolution and Regeneration of Bamboo in LiCl/DMSO Solvent System [J]. Scientia Silvae Sinicae, 2020, 56(9): 201-206. |
[12] | Yu Zhou,Yanming Han,Gaiyu Li,Fuxiang Chu. Effect of Enzymatic Hydrolysis Lignin Mass Concentration on the Structure of Lignin Nano Particles and Drug-Loading Behavior [J]. Scientia Silvae Sinicae, 2020, 56(3): 109-116. |
[13] | Ruyi Sha,Shasha Zhang,Zhan Yu,Fuquan Zhao,Chenggang Cai,Zhuqian Xiao,Jianwei Mao. Advances in Pseudo-Lignin Deposition and Its Effects on Enzymatic Hydrolysis of Cellulose [J]. Scientia Silvae Sinicae, 2020, 56(3): 127-143. |
[14] | Huijing Fu,Xia Hu,Songqing Wu,Rong Wang,Guanghong Liang,Shiguo Huang,Feiping Zhang. Culture Conditions and Lignin-Degrading Function of Serratia marcescens Living in the Larval Gut of Monochamus alternatus [J]. Scientia Silvae Sinicae, 2020, 56(2): 106-115. |
[15] | Jiaqi Hu,Qi Qi,Xiangning Jiang,Ying Gai. Effect of Fusion Gene 4CL1-CCR of Populus tomentosa on Lignin Deposition in Tobacco [J]. Scientia Silvae Sinicae, 2020, 56(10): 63-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||