Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (5): 169-176.doi: 10.11707/j.1001-7488.LYKX20220456
• Research papers • Previous Articles Next Articles
Shoujia Liu1,2,3,Tuo He1,2,3,4,*,Yang Lu1,2,3,Lichao Jiao1,2,3,Juan Guo1,2,3,Wiedenhoeft Alex C5,Yafang Yin1,2,3
Received:
2022-07-06
Online:
2024-05-25
Published:
2024-06-14
Contact:
Tuo He
CLC Number:
Shoujia Liu,Tuo He,Yang Lu,Lichao Jiao,Juan Guo,Wiedenhoeft Alex C,Yafang Yin. Quantitative Anatomy Analysis on Wood Feature Variability and Wood Identification of Swietenia Species[J]. Scientia Silvae Sinicae, 2024, 60(5): 169-176.
Table 1
The detailed information of samples used in this study"
大叶桃花心木Swietenia macrophylla | 桃花心木Swietenia mahagoni | 矮叶桃花心木Swietenia humilis | |||||
标本号 Specimen code | 产地 Place of origin | 标本号 Specimen code | 产地 Place of origin | 标本号 Specimen code | 产地 Place of origin | ||
RBw3805 | 阿根廷Argentina | MADw1203 | 古巴Cuba | MADw725 | 哥斯达黎加Costa Rica | ||
RBw3806 | 美国America | MADw2671 | 美国America | MADw2414 | 美国America | ||
RBw3809 | 阿根廷Argentina | MADw2676 | 美国America | MADw5109 | 萨尔瓦多El Salvador | ||
RBw3813 | 阿根廷Argentina | MADw3905 | 波多黎各Puerto Rico | MADw8678 | 危地马拉Guatemala | ||
RBw3815 | 阿根廷Argentina | MADw3939 | 美国America | MADw11879 | 墨西哥Mexico | ||
RBw3821 | 阿根廷Argentina | MADw4780 | 美国America | MADw33827 | 危地马拉Guatemala | ||
RBw3848 | 波多黎各Puerto Rico | MADw5382 | 菲律宾Philippines | SJRw3060 | 美国America | ||
RBw4039 | 阿根廷Argentina | MADw7264 | 印尼Indonesia | SJRw4765 | 利比里亚Liberia | ||
RBw4570 | 圭亚那Guyana | MADw8567 | 多米尼加Dominica | SJRw5359 | 菲律宾Philippines | ||
RBw7214 | 菲律宾Philippines | MADw8676 | 美国America | SJRw5894 | 美国America | ||
MADw2395 | 哥伦比亚Colombia | MADw8677 | 美国America | SJRw7484 | 韩国Korea | ||
MADw3056 | 委内瑞拉Venezuela | MADw10139 | 古巴Cuba | SJRw8902 | 美国America | ||
MADw3575 | 哥斯达黎加Costa Rica | MADw11039 | 海地Haiti | SJRw9630 | 墨西哥Mexico | ||
MADw3576 | 哥斯达黎加Costa Rica | MADw13405 | 古巴Cuba | SJRw10364 | 厄瓜多尔Ecuador | ||
MADw4039 | 委内瑞拉Venezuela | MADw13753 | 古巴Cuba | SJRw38312 | 印尼Indonesia |
Table 2
Significance analysis of quantitative wood anatomical features of three Swietenia species"
定量解剖特征 Quantitative wood anatomical features | 大叶桃花心木 Swietenia macrophylla | 桃花心木 Swietenia mahagoni | 矮叶桃花心木 Swietenia humilis | |
导管分子长度 Vessel element length/μm | 平均值±标准差Mean±SD | 534±57a | 422±53b | 439±62b |
最小值Min. | 426 | 347 | 324 | |
最大值Max. | 618 | 524 | 583 | |
管孔弦向直径 Tangential diameter of vessel lumina/μm | 平均值±标准差Mean±SD | 150±17a | 117±15b | 144±17a |
最小值Min. | 121 | 86 | 106 | |
最大值Max. | 182 | 141 | 170 | |
管孔频率 Vessels per square milimeter/mm?2 | 平均值±标准差Mean±SD | 7.2±4.2b | 11.3±3.5a | 9.7±3.1a |
最小值Min. | 5.2 | 5.5 | 5.9 | |
最大值Max. | 9.7 | 19.5 | 16.6 | |
木纤维长度 Fiber length/μm | 平均值±标准差Mean±SD | 1 295±99a | 1 148±93b | 1 217±119ab |
最小值Min. | 1 028 | 993 | 1 023 | |
最大值Max. | 1423 | 1317 | 1423 | |
木射线宽度 Ray width/μm | 平均值±标准差Mean±SD | 50±11a | 55±12a | 52±10a |
最小值Min. | 33 | 38 | 35 | |
最大值Max. | 81 | 78 | 65 | |
木射线高度 Ray height/μm | 平均值±标准差Mean±SD | 389±54.7a | 318±42b | 331±59b |
最小值Min. | 274 | 262 | 244 | |
最大值Max. | 522 | 397 | 412 | |
木射线频率 Rays per millimeter/mm?2 | 平均值±标准差Mean±SD | 4.9±0.4b | 5.6±0.5b | 5.1±0.7a |
最小值Min. | 4.0 | 4.8 | 4.1 | |
最大值Max. | 5.6 | 6.5 | 6.5 |
何 拓. 2019. 基于机器学习的黄檀属与紫檀属木材识别方法研究. 北京: 中国林业科学研究院. | |
He T. 2019. Study on wood identification methods for Dalbergia and Pterocarpus species in combination with machine learning. Beijing: Chinese Academy of Forestry. [in Chinese] | |
何 拓, 刘守佳, 陆 杨, 等. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统. 林业科学, 2021a, 57 (9): 152- 159. | |
He T, Liu S J, Lu Y, et al. iWood: an automated wood identification system for endangered and precious tree species using convolutional neural networks. Scientia Silvae Sinicae, 2021a, 57 (9): 152- 159. | |
何 拓, 焦立超, 郭 娟, 等. 木材信息学: 发展、应用与展望. 木材科学与技术, 2021b, 35 (4): 15- 24. | |
He T, Jiao L C, Guo J, et al. Wood informatics: history of development, application, and prospective trend. Chinese Journal of Wood Science and Technology, 2021b, 35 (4): 15- 24. | |
姜笑梅, 殷亚方, 刘 波. 木材树种识别技术现状、发展与展望. 木材工业, 2010, 24 (4): 36- 39. | |
Jiang X M, Yin Y F, Liu B. Current status, development and prospect of wood identification technology. China Wood Industry, 2010, 24 (4): 36- 39. | |
吕红燕, 冯 倩. 随机森林算法研究综述. 河北省科学院学报, 2019, 36 (3): 37- 41. | |
Lü H Y, Feng Q. A review of random forests algorithm. Journal of the Hebei Academy of Sciences, 2019, 36 (3): 37- 41. | |
刘晓丽, 王喜明, 姜笑梅, 等. 沙棘材解剖及物理力学性质的研究. 北京林业大学学报, 2004, 26 (2): 84- 89,117. | |
Liu X L, Wang X M, Jiang X M, et al. Anatomical and physico-mechanical properties of Hippophae rhamnoides L. Journal of Beijing Forestry University, 2004, 26 (2): 84- 89,117. | |
任 宁, 刘一星, 巩翠芝. 木材微观构造与拉伸断裂的关系. 东北林业大学学报, 2008, 36 (2): 33- 35.
doi: 10.3969/j.issn.1000-5382.2008.02.012 |
|
Ren N, Liu Y X, Gong C Z. Relationship between wood microstructure and tensile fracture. Journal of Northeast Forestry University, 2008, 36 (2): 33- 35.
doi: 10.3969/j.issn.1000-5382.2008.02.012 |
|
汪师孟, 夏美君. 十二种落叶栎木的木材分类. 北京林业大学学报, 1986, 8 (3): 17- 23. | |
Wang S M, Xia M J. Classification of twelve oak species by means of wood structure. Journal of Beijing Forestry University, 1986, 8 (3): 17- 23. | |
王善武, 沈熙环, 汪师孟. 油松种内材质变异的研究. 北京林业大学学报, 1992, 14 (1): 87- 92. | |
Wang S W, Shen X H, Wang S M. Study on variation of wood propertiesin Pinus tabulaeformis. Journal of Beijing Forestry University, 1992, 14 (1): 87- 92. | |
卫广扬. 东南亚热带木材识别的若干解剖特征研究. 安徽农学院学报, 1990, 17 (1): 19- 25. | |
Wei G Y. Observation on some anatomical features used in identification of tropical wood. Journal of Anhui Agricultural University, 1990, 17 (1): 19- 25. | |
Beeckman H. Wood anatomy and trait-based ecology. IAWA Journal, 2016, 37 (2): 127- 151.
doi: 10.1163/22941932-20160127 |
|
Beery W H, Ifju G, McLain T E. Quantitative wood anatomy-relating anatomy to transverse tensile strength. Wood and Fiber Science, 1983, 15 (4): 395- 407. | |
Bik H M. Let’s rise up to unite taxonomy and technology. PLoS Biology, 2017, 15 (8): e2002231.
doi: 10.1371/journal.pbio.2002231 |
|
Cornelius J P, Wightman K E, Grogan J E, et al. 2004. Tropical ecosystems. Swietenia (American Mahogany). Encyclopedia of Forest Sciences, Amsterdam: Elsevier, 1720-1726. | |
Hellberg E, Carcaillet C. Wood anatomy of west European Betula: quantitative descriptions and applications for routine identification in paleoecological studies. É coscience, 2003, 10 (3): 370- 379. | |
Gasson P, Miller R, Stekel D J, et al. Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naive Bayes classification. Annals of Botany, 2010, 105 (1): 45- 56.
doi: 10.1093/aob/mcp270 |
|
Gasson P E, Lancaster C A, Young R, et al. 2021. WorldForestID: addressing the need for standardized wood reference collections to support authentication analysis technologies; a way forward for checking the origin and identity of traded timber. Plants, People, Planet, 3(2): 130−141. | |
Godfray H C J. Challenges for taxonomy. Nature, 2002, 417, 17- 19.
doi: 10.1038/417017a |
|
Han H, Guo X L, Yu H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), 2016, Beijing, China, 219- 224. | |
He T, Marco J, Soares R, et al. Machine learning models with quantitative wood anatomy data can discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests, 2019, 11 (1): 36- 49.
doi: 10.3390/f11010036 |
|
Ifju G. Quantitative wood anatomy certain geometrical-statistical relationships. Wood and Fiber Science, 1983, 15 (4): 326- 337. | |
Li S, Li X, Link R, et al. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China. Forests, 2019, 10 (8): 662.
doi: 10.3390/f10080662 |
|
Liu S J, He T, Wang J J, et al. 2022. Can quantitative wood anatomy data coupled with machine learning analysis discriminate CITES species from their look-alikes? Wood Science and Technology, 56(5): 1567−1583. | |
Ovalle-Magallanes B, Madariaga-Mazón A, Navarrete A, et al. Mechanisms of action of antihyperglycemic mexicanolides isolated from Swietenia humillis: in vivo and in silico approaches. Planta Medica, 2016, 81 (S01): S1- S381. | |
Panshin A J. Comparative anatomy of the woods of the Meliaceae, sub-family swietenioideae. American Journal of Botany, 1933, 20 (10): 638- 668. | |
Ravindran P, Costa A, Soares R, et al. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 2018, 14 (1): 1- 10.
doi: 10.1186/s13007-017-0271-6 |
|
von Arx G, Crivellaro A, Prendin A L, et al. Quantitative wood anatomy-practical guidelines. Frontiers in Plant Science, 2016, 7, 781. | |
von Arx G, Carrer M, Crivellaro A, et al. Q-NET–a new scholarly network on quantitative wood anatomy. Dendrochronologia, 2021, 70, 125890.
doi: 10.1016/j.dendro.2021.125890 |
|
Wiedenhoeft A C, Simeone J, Smith A, et al. Fraud and misrepresentation in retail forest products exceeds U. S. forensic wood science capacity. PLoS One, 2019, 14 (7): e0219917.
doi: 10.1371/journal.pone.0219917 |
|
Yin Y, Jiang X, Yuan L. 2016. Identification manual of endangered and precious timber species common in trades. Beijing: Science Press. |
[1] | Shihao Zhu,Zhiwei Wu,Zhengjie Li,Shun Li. Moisture Dynamics and Modeling of Ground Surface Fine Dead Combustibles in Pinus massoniana Forest in Southern Jiangxi, China [J]. Scientia Silvae Sinicae, 2024, 60(5): 158-168. |
[2] | Huiling Tian,Jianhua Zhu,Xiao He,Xinyun Chen,Zunji Jian,Chenyu Li,Xueyuan Guo,Guosheng Huang,Wenfa Xiao. Projected Biomass Carbon Stock of Arbor Forest of Three Provinces in Northeastern China Based on Random Forest Model [J]. Scientia Silvae Sinicae, 2022, 58(4): 40-50. |
[3] | Xinyuan Liu,Guang Yang,Jibin Ning,Daotong Geng,Hongzhou Yu,Xueying Di. Quality and Influencing Factors of Particulate Matter Released by Surface Fuel Combustion in Korean Pine Plantation [J]. Scientia Silvae Sinicae, 2022, 58(3): 97-106. |
[4] | Xuzhan Guo,Qiao Chen,Xiaofang Zhang,Liang Hong,Yuanyuan You,Shouzheng Tang,Liyong Fu. Extraction of Healthy Canopy of New Afforestation for Pinus tabulaeformis Based on UAV High-Resolution Image [J]. Scientia Silvae Sinicae, 2022, 58(10): 111-120. |
[5] | Zhongqiu Sun,Jinping Gao,Fayun Wu,Xianlian Gao,Yang Hu,Jianxin Gao. Estimating Forest Stock Volume via Small-Footprint LiDAR Point Cloud Data and Random Forest Algorithm [J]. Scientia Silvae Sinicae, 2021, 57(8): 68-81. |
[6] | Ziyu Zhao,Xiaoxia Yang,Hui Guo,Zhedong Ge,Yucheng Zhou. Recognition Method of Wood Macro- and Micro-Structure Based on Convolution Neural Network [J]. Scientia Silvae Sinicae, 2021, 57(6): 134-143. |
[7] | Jiaqi You,Mingze Li,Wenyi Fan,Ying Quan,Bin Wang,Zhukun Mo,Zixiao Zhu. Stand Type Identification Based on Hyperspectral and LiDAR Data [J]. Scientia Silvae Sinicae, 2021, 57(5): 119-129. |
[8] | Ying Pan,Mingming Ding,Jie Lin,Qiao Dai,Geng Guo,Linlin Cui. Inversion of Forest Leaf Area Index Based on PROSAIL Model and Multi-Angle Remote Sensing Data [J]. Scientia Silvae Sinicae, 2021, 57(4): 90-106. |
[9] | Wenbo Li,Zhengang Lü,Xuanrui Huang,Zhidong Zhang. Predicting Spatial Distribution of Site Index for Larix principis-rupprechtii Plantations in the Northern Hebei Province [J]. Scientia Silvae Sinicae, 2021, 57(3): 79-89. |
[10] | Bo Liu,Yuejin Fu,Xingxia Ma,Yun Lu,Lin Wang. Relationship between Wood Species Selection and Biological Diseases of Ancient Building Wooden Components in Severe Wood Biological Diseases Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 108-121. |
[11] | Xiao Yuan,Yongping Chen,Qiheng Tang,Wenjing Guo. Identification of Common Wood Species of Wooden Components in Ancient Buildings Based on Micro-Destructive Testing [J]. Scientia Silvae Sinicae, 2021, 57(12): 122-131. |
[12] | Hengshuo Su,Jun Lü,Zhiping Ding,Yanjie Tang,Xudong Chen,Qiang Zhou,Zheyu Zhang,Qing Yao. Wood Identification Algorithm Based on Improved Residual Neural Network [J]. Scientia Silvae Sinicae, 2021, 57(12): 147-154. |
[13] | Jiaqi Ding,Wenli Huang,Yingchun Liu,Yang Hu. Estimation of Forest Aboveground Biomass in Northwest Hunan Province Based on Machine Learning and Multi-Source Data [J]. Scientia Silvae Sinicae, 2021, 57(10): 36-48. |
[14] | Lei Zhang, Pengsen Sun, Shirong Liu. Growing-Season Transpiration of Typical Forests in Different Succession Stages in Subalpine Region of Western Sichuan, China [J]. Scientia Silvae Sinicae, 2020, 56(1): 1-9. |
[15] | Hou Xiaojing, Ming Jinke, Qin Rongshui, Zhu Jiping. Analysis of the Fire Risk in Wildland-Urban Interface with Random Forest Model [J]. Scientia Silvae Sinicae, 2019, 55(8): 194-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||