Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (5): 116-126.doi: 10.11707/j.1001-7488.LYKX20220097
• Research papers • Previous Articles Next Articles
Chunling Wang1,2,Kaiyuan Shi1,2,Yong Pang3,4,*,Shili Meng3,4
Received:
2022-02-23
Online:
2024-05-25
Published:
2024-06-14
Contact:
Yong Pang
CLC Number:
Chunling Wang,Kaiyuan Shi,Yong Pang,Shili Meng. Forest Cover Mapping of Central and Eastern European Countries Based on Change Detection and Update[J]. Scientia Silvae Sinicae, 2024, 60(5): 116-126.
Table 1
Collection of land cover products"
分类产品 Land cover products | 发布机构 Issued organization | 数据来源 Data source | 产品年份 Production year | 空间分辨率 Spatial resolution/m |
GlobeLand30 | 国家基础地理信息中心 National Geomatics Center of China | Landsat TM/ETM+/OLI HJ-1 A/B | 2000,2010,2020 | 30 |
GLC_FCS30 | 中国科学院 Chinese Academy of Sciences | Landsat TM/ETM+ | 2015,2020 | 30 |
The Land Cover Map of Europe 2017 | 欧洲航天局 European Space Agency | Sential-2 | 2017 | 10 |
Table 3
Classification confusion matrix of our product land cover verification results by LUCAS data"
类别 Category | 耕地 Cropland | 森林 Forest | 草地 Grass | 灌木 Shrub | 湿地 Wetland | 水体 Water | 人造地表 Impervious | 裸地 Bare land | 合计 Total | 用户精度 User accuracy |
耕地 Cropland | 101 568 | 10 412 | 9 704 | 4 656 | 386 | 503 | 2 550 | 276 | 130 055 | 0.781 |
森林 Forest | 2 149 | 103 879 | 2 789 | 1 934 | 217 | 398 | 654 | 77 | 112 097 | 0.930 |
草地 Grass | 2 510 | 2 273 | 13 632 | 778 | 29 | 10 | 104 | 78 | 19 414 | 0.700 |
灌木 Shrub | 329 | 1 828 | 468 | 541 | 14 | 17 | 46 | 22 | 3 265 | 0.702 |
湿地 Wetland | 68 | 643 | 288 | 221 | 1 250 | 201 | 19 | 24 | 2 714 | 0.461 |
水体 Water | 16 | 86 | 62 | 50 | 27 | 3 235 | 2 | 34 | 3 512 | 0.920 |
人造地表 Impervious | 1 061 | 2 256 | 2 651 | 339 | 7 | 61 | 4 478 | 328 | 11 181 | 0.401 |
裸地 Bare land | 5 | 35 | 50 | 44 | 0 | 10 | 1s | 47 | 192 | 0.245 |
合计 Total | 107 706 | 121 412 | 29 644 | 8 563 | 1 930 | 4 435 | 7854 | 886 | 282 430 | |
生产精度 Producer accuracy | 0.943 | 0.860 | 0.500 | 0.060 | 0.650 | 0.730 | 0.570 | 0.050 | 0.810 |
Table 4
Classification confusion matrix of our product verification results by visual interpretation data"
类别 Category | 耕地 Cropland | 森林 Forest | 草地 Grass | 灌木 Shrub | 湿地 Wetland | 水体 Water | 人造地表 Impervious | 合计 total | 用户精度 User accuracy |
耕地 Cropland | 797 | 12 | 17 | 21 | 1 | 1 | 10 | 859 | 0.928 |
森林 Forest | 29 | 607 | 15 | 13 | 0 | 0 | 2 | 666 | 0.911 |
草地 Grass | 24 | 8 | 33 | 17 | 0 | 0 | 0 | 82 | 0.402 |
灌木 Shrub | 9 | 6 | 2 | 10 | 0 | 0 | 0 | 27 | 0.370 |
湿地 Wetland | 5 | 2 | 1 | 3 | 16 | 2 | 0 | 29 | 0.552 |
水体 Water | 0 | 0 | 1 | 0 | 1 | 25 | 0 | 27 | 0.926 |
人造地表 Impervious | 7 | 0 | 2 | 2 | 0 | 0 | 59 | 70 | 0.831 |
合计 Total | 871 | 635 | 71 | 66 | 18 | 28 | 71 | 1 760 | |
生产精度 Producer accuracy | 0.915 | 0.956 | 0.465 | 0.152 | 0.889 | 0.893 | 0.831 | 0.880 |
Table 5
Statistic for forest cover of CEEC in 2020"
国家 Country | 本文研究 结果 This paper(%) | GLobaLand30 2020(%) | FAOSTAT (%) |
阿尔巴尼亚Albania | 39.0 | 51.1 | 29.5 |
爱沙尼亚Estonia | 56.5 | 45.5 | 59.7 |
保加利亚Bulgaria | 40.1 | 34.2 | 41.1 |
波黑Bosnia and Herzegovina | 64.5 | 50.0 | 54.2 |
波兰Poland | 34.8 | 30.8 | 35.1 |
黑山Montenegro | 56.4 | 66.6 | 71.6 |
捷克Czech | 38.8 | 25.7 | 41.7 |
克罗地亚Croatia | 47.9 | 37.2 | 50.0 |
拉脱维亚Latvia | 56.5 | 43.3 | 51.0 |
立陶宛Lithuania | 36.3 | 34.4 | 34.4 |
罗马尼亚Romania | 34.5 | 20.2 | 34.3 |
马其顿Macedonia | 42.7 | 62.1 | 43.7 |
塞尔维亚Serbia | 36.0 | 36.1 | 35.7 |
斯洛伐克Slovakia | 46.8 | 39.2 | 49.4 |
斯洛文尼亚Slovenia | 65.6 | 58.2 | 68.0 |
匈牙利 Hungary | 21.9 | 20.0 | 26.6 |
总计 Total | 39.6 | 34.4 | 40.0 |
陈 军, 陈 晋, 廖安平, 等. 全球30 m地表覆盖遥感制图的总体技术. 测绘学报, 2014, 43 (6): 551- 557. | |
Chen J, Chen J, Liao A P, et al. Concepts and key techniques for 30 m global land cover mapping. Acta Geodaetica et Cartographica Sinica, 2014, 43 (6): 551- 557. | |
陈 军, 廖安平, 陈 晋, 等. 全球30 m地表覆盖遥感数据产品——GlobeLand30. 地理信息世界, 2017, 24 (1): 1- 8.
doi: 10.3969/j.issn.1672-1586.2017.01.002 |
|
Chen J, Liao A P, Chen J, et al. 30-meter global land cover data product: GlobeLand30. Geomatics World, 2017, 24 (1): 1- 8.
doi: 10.3969/j.issn.1672-1586.2017.01.002 |
|
庞 勇, 蒙诗栎, 史锴源, 等. 中国天然林保护工程区森林覆盖遥感监测. 生态学报, 2021, 41 (13): 5080- 5092. | |
Pang Y, Meng S L, Shi K Y, et al. Forest coverage monitoring in the natural forest protection project area of China. Acta Ecologica Sinica, 2021, 41 (13): 5080- 5092. | |
王燕琴, 陈 洁, 顾亚丽. 中东欧地区林业发展现状及“16+1”合作前景分析. 林业资源管理, 2017, (1): 153- 159. | |
Wang Y Q, Chen J, Gu Y L. Forestry development in central and eastern European countries and analysis on future“16+1”forestry cooperation. Forest Resources Management, 2017, (1): 153- 159. | |
Ballin M, Barcaroli G, Masselli M, et al. Redesign sample for land use/cover area frame survey (LUCAS) 2018. Eurostat:Statistical Working Papers, 2018, 10, 132365. | |
Cánovas-García F, Alonso-Sarría F, Gomariz-Castillo F, et al. Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery. Computers & Geosciences, 2017, 103, 1- 11. | |
Chen C, Liaw A, Breimenn L. 2004. Using random forest to learn imbalanced data. Statistics Department of University of California, Berkeley. | |
Chen J, Ban Y F, Li S N. Open access to earth land-cover map. Nature, 2014, 514 (7523): 434. | |
Chen J, Chen J, Liao A P, et al. Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103, 7- 27.
doi: 10.1016/j.isprsjprs.2014.09.002 |
|
Chen J, Lu M, Chen X, et al. A spectral gradient difference based approach for land cover change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85, 1- 12.
doi: 10.1016/j.isprsjprs.2013.07.009 |
|
Cohen W B, Yang Z, Healey S P, et al. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sensing of Environment, 2018, 205, 131- 140.
doi: 10.1016/j.rse.2017.11.015 |
|
Foody G M. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering & Remote Sensing, 2004, 70 (5): 627- 633. | |
Foody G M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 2020, 239, 111630.
doi: 10.1016/j.rse.2019.111630 |
|
Gao Y, Liu L Y, Zhang X, et al. Consistency analysis and accuracy assessment of three global 30-m land-cover products over the European Union using the Lucas dataset. Remote Sensing, 2020, 12 (21): 3479.
doi: 10.3390/rs12213479 |
|
Griffiths P, van der Linden S, Kuemmerle T, et al. A pixel-based Landsat compositing algorithm for large area land cover mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6 (5): 2088- 2101.
doi: 10.1109/JSTARS.2012.2228167 |
|
Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change. Science, 2013, 342 (6160): 850- 853.
doi: 10.1126/science.1244693 |
|
Hermosilla T, Wulder M A, White J C, et al. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, 2016, 9 (11): 1035- 1054.
doi: 10.1080/17538947.2016.1187673 |
|
Hu Y F, Dong Y. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 347- 359.
doi: 10.1016/j.isprsjprs.2018.10.008 |
|
Jin S, Yang L, Zhu Z, et al. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sensing of Environment, 2017, 195, 44- 55.
doi: 10.1016/j.rse.2017.04.021 |
|
Karydas C G, Gitas I Z, Kuntz S, et al. Use of LUCAS LC point database for validating country-scale land cover maps. Remote Sensing, 2015, 7 (5): 5012- 5041.
doi: 10.3390/rs70505012 |
|
Kelley L C, Pitcher L, Bacon C. Using google earth engine to map complex shade-grown coffee landscapes in northern Nicaragua. Remote Sensing, 2018, 10 (6): 952.
doi: 10.3390/rs10060952 |
|
Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-temporal segmentation algorithms. Remote Sensing of Environment, 2010, 114 (12): 2897- 2910.
doi: 10.1016/j.rse.2010.07.008 |
|
Li X J, Chen W T, Cheng X W, et al. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using Ziyuan-3 stereo satellite imagery. Remote Sensing, 2016, 8 (6): 514.
doi: 10.3390/rs8060514 |
|
Mahdianpari M, Salehi B, Mohammadimanesh F, et al. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130, 13- 31.
doi: 10.1016/j.isprsjprs.2017.05.010 |
|
Malinowski R, Lewiński S, Rybicki M, et al. Automated production of a land cover/use map of Europe based on Sentinel-2 imagery. Remote Sensing, 2020, 12 (21): 3523.
doi: 10.3390/rs12213523 |
|
Maxwell A E, Strager M P, Warner T A, et al. Large-area, high spatial resolution land cover mapping using random forests, GEOBIA, and NAIP orthophotography: findings and recommendations. Remote Sensing, 2019, 11 (12): 1409.
doi: 10.3390/rs11121409 |
|
Maxwell A E, Warner T A, Fang F. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 2018, 39 (9): 2784- 2817.
doi: 10.1080/01431161.2018.1433343 |
|
Millard K, Richardson M. On the importance of training data sample selection in random forest image classification: a case study in peatland ecosystem mapping. Remote Sensing, 2015, 7 (7): 8489- 8515.
doi: 10.3390/rs70708489 |
|
Pflugmacher D, Rabe A, Peters, M, et al. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sensing of Environment, 2019, 221, 583- 595.
doi: 10.1016/j.rse.2018.12.001 |
|
Potapov P V, Turubanova S A, Tyukavina A, et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sensing of Environment, 2015, 159, 28- 43.
doi: 10.1016/j.rse.2014.11.027 |
|
Soenen S A, Peddle D R, Coburn C A. SCS C: a modified sun-canopy-sensor topographic correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (9): 2148- 2159.
doi: 10.1109/TGRS.2005.852480 |
|
Tang D M, Fan H, Yang K, et al. Mapping forest disturbance across the China-Laos border using annual Landsat time series. International Journal of Remote Sensing, 2019, 40 (8): 2895- 2915.
doi: 10.1080/01431161.2018.1533662 |
|
Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m Landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144, 325- 340.
doi: 10.1016/j.isprsjprs.2018.07.017 |
|
Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 2010, 114 (1): 106- 115.
doi: 10.1016/j.rse.2009.08.014 |
|
White J C, Wulder M A, Hobart G W, et al. Pixel-based image compositing for large-area dense time series applications and science. Canadian Journal of Remote Sensing, 2014, 40 (3): 192- 212.
doi: 10.1080/07038992.2014.945827 |
|
Xia J S, Falco N, Benediktsson J A, et al. Hyperspectral image classification with rotation random forest via KPCA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (4): 1601- 1609.
doi: 10.1109/JSTARS.2016.2636877 |
|
Zhang X, Liu L Y, Chen X D, et al. Fine land-cover mapping in China using Landsat DataCube and an operational SPECLib-based approach. Remote Sensing, 2019, 11 (9): 1056.
doi: 10.3390/rs11091056 |
|
Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data, 2021, 13, 2753- 2776.
doi: 10.5194/essd-13-2753-2021 |
|
Zhu Z, Woodcock C E, Olofsson P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sensing of Environment, 2012, 122, 75- 91.
doi: 10.1016/j.rse.2011.10.030 |
|
Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 2014, 144, 152- 171.
doi: 10.1016/j.rse.2014.01.011 |
|
Zhu Z, Zhang J X, Yang Z Q, et al. Continuous monitoring of land disturbance based on Landsat time series. Remote Sensing of Environment, 2020, 238, 111116.
doi: 10.1016/j.rse.2019.03.009 |
[1] | Dan Pan,Luyi Luo,Yi Yu,Fanbin Kong. Influence of Forest Resource Development Project on the Urban-Rural Income Gap in Old Revolutionary Regions [J]. Scientia Silvae Sinicae, 2023, 59(1): 74-89. |
[2] | Huiling Tian,Jianhua Zhu,Xiao He,Xinyun Chen,Zunji Jian,Chenyu Li,Xueyuan Guo,Guosheng Huang,Wenfa Xiao. Projected Biomass Carbon Stock of Arbor Forest of Three Provinces in Northeastern China Based on Random Forest Model [J]. Scientia Silvae Sinicae, 2022, 58(4): 40-50. |
[3] | Ruichen Zhang,Zhenjiang Lin,Siyin Yang,Haiyan Wang. Application of Coefficient Adjustment Method in Evaluation of Ecological Service Value of Forest Resources [J]. Scientia Silvae Sinicae, 2022, 58(12): 104-113. |
[4] | Chungan Li,Zhen Li. Generalizing Predictive Models of Sub-Tropical Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data [J]. Scientia Silvae Sinicae, 2021, 57(10): 23-35. |
[5] | Jinying Xie,Lixia Ding,Zhihui Wang,Lijuan Liu. Classification of Coastal Wetland Vegetation Utilizing FCN and Object-Oriented Methods [J]. Scientia Silvae Sinicae, 2020, 56(8): 98-106. |
[6] | Lü Zhou,Guanglong Ou,Junfeng Wang,Hui Xu. Light Saturation Point Determination and Biomass Remote Sensing Estimation of Pinus kesiya var. langbianensis Forest Based on Spatial Regression Models [J]. Scientia Silvae Sinicae, 2020, 56(3): 38-47. |
[7] | Li Dan, Zhang Junjie, Zhao Mengxi. Extraction of Stand Factors in UAV Image Based on FCM and Watershed Algorithm [J]. Scientia Silvae Sinicae, 2019, 55(5): 180-187. |
[8] | Mengyang Hou,Shunbo Yao. Testing of the EKC Relationship between Amount of Forest Resources and Economic Growth: An Empirical Study Based on Provincial Panel Data [J]. Scientia Silvae Sinicae, 2019, 55(12): 113-122. |
[9] | Yan Enping, Zhao Yunlin, Lin Hui, Mo Dengkui, Wang Guangxing. Estimation of Forest Carbon Density Based on Geostatistics and Multi-Resource Remote Sensing Data [J]. Scientia Silvae Sinicae, 2017, 53(7): 72-84. |
[10] | Zhang Yuxing, Wang Xuejun, Huang Guosheng, Dang Yongfeng, Chen Xinyun. Forest Area Remote Sensing Monitoring Using the Multi-Level Sampling Interpretation Approach [J]. Scientia Silvae Sinicae, 2017, 53(7): 94-104. |
[11] | Xie Zhegen, Han Guokang, Tong Hongwei, Xu Jun, Ge Wenning, He Biting. Sequential Forest Price and Its Application in Forest Resources Assets Appraisal [J]. Scientia Silvae Sinicae, 2016, 52(6): 43-53. |
[12] | Lin Zhuo, Wu Chengzhen, Hong Wei, Hong Tao. Economic Benefits Analysis of Carbon Sequestration and Timber and Determination of Optimal Rotation Period for a Cunninghamia lanceolata Plantation——Based on Time Series Model [J]. Scientia Silvae Sinicae, 2016, 52(10): 134-145. |
[13] | Xia Kai, Liu Renyi, Liu Nan, Zhang Guojiang. Updating Framework for Multi-Sources of Subcompartment Spatio-Temporal Data [J]. Scientia Silvae Sinicae, 2014, 50(8): 15-21. |
[14] | Zhao Chunyan, Li Jiping, Ma Wenjun, Yuan Xiaohong, Zheng Liu. Multi-Scale Forest Landscape Classification Considering Coupling Effect [J]. Scientia Silvae Sinicae, 2013, 49(11): 183-188. |
[15] | Wang Liuru;Li Chonggui. Developing of A Mobile GIS System of Digital Forest Resource Continuous Inventory [J]. Scientia Silvae Sinicae, 2010, 46(8): 174-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||